Stop the (Biological) Clock

Molecular structure of the three proteins in blue-green algae’s circadian clock.  Credit: Johnson Lab, Vanderbilt University.
Molecular structure of the three proteins in blue-green algae’s circadian clock. Credit: Johnson Lab, Vanderbilt University.

Many microorganisms can sense whether it’s day or night and adjust their activity accordingly. In tiny blue-green algae, the “quartz-crystal” of the time-keeping circadian clock consists of only three proteins, making it the simplest clock found in nature. Researchers led by Carl Johnson of Vanderbilt University recently found that, by manipulating these clock proteins, they could lock the algae into continuously expressing its daytime genes, even during the nighttime.

Why would one want algae to act like it’s always daytime? The kind used in Johnson’s study is widely harnessed to produce commercial products, from drugs to biofuels. But even when grown in constant light, algae with a normal circadian clock typically decrease production of biomolecules when nighttime genes are expressed. When the researchers grew the algae with the daytime genes locked “on” in constant light, the microorganism’s output increased by as much as 700 percent. This proof of concept experiment may be applicable to improving the commercial production of compounds such as insulin and some anti-cancer drugs.

Learn more:

Vanderbilt University Press Release Exit icon
Johnson Laboratory Exit icon
Circadian Rhythms Fact Sheet
The Rhythms of Life Article from Inside Life Science

Post a Comment

Required fields are marked *

You may post as "anonymous." Your e-mail address will not be published; we may use it to contact you about your comment.

*

Please note: Comment moderation is enabled and may delay your comment. There is no need to resubmit your comment.