Surprising Role for Protein Involved in Cell Death

C. elegans
Many of the key players in regulating apoptosis were discovered in C. elegans. This tiny roundworm has more than 19,000 genes, and a vast number of them are very similar to genes in other organisms, including people. Credit: Ewa M. Davison.

Our cells come equipped with a self-destruct mechanism that’s activated during apoptosis, a carefully controlled process by which the body rids itself of unneeded or potentially harmful cells. Scientists have long known that a protein called PSR-1 helps clean up the cellular remains. Now they’ve found that PSR-1 also can repair broken nerve fibers.

Ding Xue Exit icon of the University of Colorado, Boulder, and others made the finding in the tiny roundworm C. elegans, which scientists have used to study apoptosis and identify many of the genes that regulate the process. While apoptotic cells sent “eat me” signals to PSR-1, injured nerve cells sent “save me” signals to the protein. These SOS signals helped reconnect the broken nerve fibers, called axons, that would otherwise degenerate after an injury. Continue reading

5 Reasons Biologists Love Math

Biologists use math in a variety of ways, from designing experiments to mapping complex biological systems. Credit: Stock image.

On Saturday (at 9:26:53 to be exact), math lovers and others around the world will celebrate Pi—that really long number that represents the ratio of the circumference of a circle to its diameter. I asked our scientific experts why math is important to biomedical research. Here are a few reasons.

  1. Math allows biologists to describe how molecules move in and out of cells, how bacteria shuttle through blood vessels, how drugs get broken down in the body and many other physiological processes.
  2. Studying the geometry, topology and other physical characteristics of DNA, proteins and cellular structures has shed light on their functions and on approaches for enhancing or disrupting those functions.
  3. Math helps scientists design their experiments, including clinical trials, so they result in meaningful data, a.k.a statistical significance.
  4. Scientists use math to piece together all the different parts of a cell, an organ or an entire organism to better understand how the parts interact and how perturbations in these complex systems may contribute to disease.
  5. Sometimes it’s impossible or too difficult to answer a research question through traditional lab experiments, so biologists rely on math to develop models that represent the system they’re studying, whether it’s a metastasizing cancer cell or an emerging infectious disease. These approaches allow scientists to indicate the likelihood of certain outcomes as well as refine the research questions.

Want more? Here’s a video with 10 reasons biologists should know some math.

Unprecedented Views of HIV

Visualizations can give scientists unprecedented views of complex biological processes. Here’s a look at two new ones that shed light on how HIV enters host cells.

Animation of HIV’s Entry Into Host Cells

Screen shot of the video
This video animation of HIV’s entry into a human immune cell is the first one released in Janet Iwasa’s current project to visualize the virus’ life cycle. As they’re completed, the animations will be posted at Exit icon.

We previously introduced you to Janet Iwasa, a molecular animator who’s visualized complex biological processes such as cells ingesting materials and proteins being transported across a cell membrane. She has now released several animations from her current project of visualizing HIV’s life cycle Exit icon. The one featured here shows the virus’ entry into a human immune cell.

“Janet’s animations add great value by helping us consider how complex interactions between viruses and their host cells actually occur in time and space,” says Wes Sundquist, who directs the Center for the Structural Biology of Cellular Host Elements in Egress, Trafficking, and Assembly of HIV Exit icon at the University of Utah. “By showing us how different steps in viral replication must be linked together, the animations suggest hypotheses that hadn’t yet occurred to us.” Continue reading

Untangling a Trending Topic

Jean Chin
NIGMS’ Jean Chin answers questions about a new device for untangling proteins. Credit: National Institute of General Medical Sciences.

It’s not every day that we log into Facebook and Twitter to see conversations about denaturing proteins and the possibility of reducing biotechnology costs, but that changed last week when a story about “unboiling” eggs became a trending topic.

Since NIGMS partially funded the research advance Exit icon that led to the media scramble, we asked our scientific expert Jean Chin to tell us more about it.

What’s the advance?

Gregory Weiss of the University of California, Irvine, and his collaborators have designed a device that basically unties proteins that have been tangled together. Continue reading

Illuminating Biology

This time of year, lights brighten our homes and add sparkle to our holidays. Year-round, scientists funded by the National Institutes of Health use light to illuminate important biological processes, from the inner workings of cells to the complex activity of the brain. Here’s a look at just a few of the ways new light-based tools have deepened our understanding of living systems and set the stage for future medical advances.

RSV infected cell
A new fluorescent probe shows viral RNA (red) in an RSV-infected cell. Credit: Eric Alonas and Philip Santangelo, Georgia Institute of Technology and Emory University.

Visualizing Viral Activity

What looks like a colorful pattern produced as light enters a kaleidoscope is an image of a cell infected with respiratory syncytial virus (RSV) lit up by a new fluorescent probe called MTRIPS (multiply labeled tetravalent RNA imaging probes).

Although relatively harmless in most children, RSV can lead to bronchitis and pneumonia in others. Philip Santangelo of the Georgia Institute of Technology and Emory University, along with colleagues nationwide, used MTRIPS to gain a closer look at the life cycle of this virus.

Once introduced into RSV-infected cells, MTRIPS latched onto the genetic material of individual viral particles (in the image, red), making them glow. This enabled the researchers to follow the entry, assembly and replication of RSV inside the living cells. Continue reading

Field Focus: Bringing Biology Into Sharper View with New Microscopy Techniques

Composite image of mitochondria in a cell
In this composite image of mitochondria in a cell, the left panel shows a conventional optical microscopy image, the middle panel shows a three-dimensional (3-D) STORM image with color indicating depth, and the right panel shows a cross-section of the 3-D STORM image. Credit: Xiaowei Zhuang laboratory, Howard Hughes Medical Institute, Harvard University. View larger image.

Much as a photographer brings distant objects into focus with a telephoto lens, scientists can now see previously indistinct cellular components as small as a few billionths of a meter (nanometers). By overcoming some of the limitations of conventional optical microscopy, a set of techniques known as super-resolution fluorescence microscopy has changed once-blurry images of the nanoworld into well-resolved portraits of cellular architecture, with details never seen before in biology. Reflecting its importance, super-resolution microscopy was recognized with the 2014 Nobel Prize in chemistry.

Using the new techniques, scientists can observe processes in living cells across space and time and study the movements, interactions and roles of individual molecules. For instance, they can identify and track the proteins that allow a virus to invade a cell or those that enable tumor cells to migrate to distant parts of the body in metastatic cancer. The ability to analyze individual molecules, rather than collections of molecules, allows scientists to answer longstanding questions about cellular mechanisms and behavior, such as how cells move along a surface or how certain proteins interact with DNA to regulate gene activity. Continue reading

Correcting a Cellular Routing Error Could Treat Rare Kidney Disease

AGT protein and peroxisomes in untreated and treated cells.
The altered AGT protein (red) and peroxisomes (green) appear in different places in untreated cells (top), but they appear together (shown in yellow) in cells treated with DECA (bottom). Credit: Carla Koehler/Reproduced with permission from Proceedings of the National Academy of Sciences USA. View larger image.

Our cells have organized systems to route newly created proteins to the places where they’re needed to do their jobs. For some people born with a rare and potentially fatal genetic kidney disorder called PH1, a genetically altered form of a particular protein mistakenly ends up in mitochondria instead of in another organelle, the peroxisome. This cellular routing error of the AGT protein results in the harmful buildup of oxalate, which leads to kidney failure and other problems at an early age.

In new work led by UCLA biochemist Carla Koehler Exit icon, researchers used a robotic screening system to identify a compound that interferes with the delivery of proteins to mitochondria. Koehler’s team Exit icon showed that adding a small amount of the compound, known as DECA, to cells grown in the laboratory prevented the altered form of the AGT protein from going to the mitochondria and sent it to the peroxisome. The compound also reduced oxalate levels in a cell model of PH1.

The team’s findings suggest that DECA, which is already approved by the Food and Drug Administration for treating certain bacterial infections, could be a promising candidate for treating children affected by PH1. And, Koehler notes, the screening strategy that she and her team used to identify DECA as a potential therapy may help researchers identify other new therapies for the disorder.

This work was funded in part by NIH under grant R01GM061721.

Molecules Known to Damage Cells May Also Have Healing Power

Free radicals in an ying-yang symbol
Biology in balance: Molecules called free radicals—like the peroxide molecules illustrated here—have a reputation for being dangerous. Now, they’ve revealed healing powers. In worms, at least. Credit: Stock image

When our health is concerned, some molecules are widely labeled “good,” while others are considered “bad.” Often, the truth is more complicated.

Consider free radical molecules. These highly reactive, oxygen-containing molecules are well known for damaging DNA, proteins and other molecules in our bodies. They are suspected of contributing to premature aging and cancer. But now, new research shows they might also have healing powers Exit icon.

Using the oft-studied laboratory roundworm known as C. elegans, a research group led by Andrew Chisholm Exit icon at the University of California, San Diego, made a surprising discovery. Free radicals, specifically those made in cell structures called mitochondria, appear necessary for skin wounds to heal. In fact, higher (but not dangerously high) levels of the molecules can actually speed wound closure.

If further research shows the same holds true in humans, the work could point to new ways to treat hard-to-heal wounds, like diabetic foot ulcers.

This work was funded in part by NIH under grants R01GM054657 and P40OD010440.

Cells by the Numbers

Cells are the basic unit of life—and the focus of much scientific study and classroom learning. Here are just a few of their fascinating facets.

3.8 billion

Nerve Cells
Developing nerve cells, with the nuclei shown in yellow. Credit: Torsten Wittmann, University of California, San Francisco.

That’s how many years ago scientists believe the first known cells originated on Earth. These were prokaryotes, single-celled organisms that do not have a nucleus or other internal structures called organelles. Bacteria are prokaryotes, while human cells are eukaryotes.

0.001 to 0.003

This is the diameter in centimeters of most animal cells, making them invisible to the naked eye. There are some exceptions, such as nerve cells that can stretch from our hips to our toes, sending electrical signals throughout the body.


Red blood Cells
Oxygen-transporting red blood cells. Credit: Dennis Kunkel, Dennis Kunkel Microscopy, Inc.

In that year, British scientist Robert Hooke coined the term cell to describe the porous, grid-like structure he saw when viewing a thin slice of cork under a microscope. Today, scientists study cells using a variety of high-tech imaging equipment as well as rainbow-colored dyes and a green fluorescent protein derived from jellyfish.


That’s how many different types of cells are in the human body, including those in our skin, muscles, nerves, intestines, blood and bones.

3 to 5

Believe it or not, that’s the approximate number of pounds of bacteria you’re carrying around, depending on your size. Even though bacterial cells greatly outnumber ours, they’re much smaller than our cells and therefore account for less than 3 percent of our body mass. Scientists are learning more about how our body bacteria contribute to our health.


Snapshot of a phase of the cell cycle.
A snapshot of a phase of the cell cycle. Credit: Jean Cook and Ted Salmon, UNC School of Medicine.

This is the typical length in hours of the animal cell cycle, the time from a cell’s formation to when it splits in two to make more cells.


That’s the approximate lifespan in days of a human red blood cell. Other cell types have different lifespans, from a few weeks for some skin cells to as long as the life of the organism for healthy neurons.

50 to 70 billion

Each day, approximately this many cells die in the human body as part of a normal process that serves a healthy and protective role. Those that die in the largest numbers are skin cells, blood cells and some cells that line structures like organs and glands.

Get stats on what scientists have learned so far about genetics.

Learn more:

Inside the Cell Booklet
Studying Cells Fact Sheet

How Instructions for Gene Activity Are Passed Across Generations

C. elegans embryos
Images of C. elegans embryos show transmission of an epigenetic mark (green) during cell division from a one-cell embryo (left) to a two-cell embryo (right). Credit: Laura J. Gaydos.

Chemical tags that cells attach to DNA or to DNA-packaging proteins across the genome—called epigenetic marks—can alter gene activity, or expression, without changing the underlying DNA code. As a result, these epigenetic changes can influence health and disease. But it’s a matter of debate as to whether and how certain epigenetic changes on DNA-packaging proteins can be passed from parents to their offspring.

In studies with a model organism, the worm C. elegans, researchers led by Susan Strome Exit icon of the University of California, Santa Cruz, have offered new details that help resolve the debate.

Strome’s team created worms with a genetic change that knocks out the enzyme responsible for making a particular methylation mark, a type of epigenetic mark that can turn off gene expression at certain points of an embryo’s development. Then the scientists bred the knockout worms with normal ones. Looking at the chromosomes from the resulting eggs, sperm and dividing cells of embryos after fertilization, the researchers found that the methylation marks are passed from both parents to offspring. The enzyme, however, is passed to the offspring just by the egg cell. For embryos with the enzyme, the epigenetic marks are passed faithfully through many cell divisions. For those without it, the epigenetic mark can be passed through a few cell divisions.

Because all animals use the same enzyme to create this particular methylation mark, the results have implications for parent-to-child epigenetic inheritance as well as cell-to-cell inheritance in other organisms.

This work was funded in part by NIH under grants R01GM034059, T32GM008646 and P40OD010440.

Learn more:

University of California, Santa Cruz News Release Exit icon
Dynamic DNA Section from The New Genetics Booklet