Research Organism Superheroes: Fruit Flies

0 comments
A fruit fly on a yellow fruit.
Credit: iStock.

Those pesky little bugs flying around the overripe bananas in your kitchen may hold the key to understanding something new about how our bodies work. That’s right, the fruit fly (Drosophila melanogaster) is a widely used research organism in genetics because of its superpower of reproducing quickly with similar genes to people.

Researchers have been studying fruit flies for over a century for many reasons. First, they’re easy to please—just keep them at room temperature and feed them corn meal, sugar, and yeast (or those bananas on your counter!). Second, they reproduce more quickly and have shorter life cycles than larger organisms. A female can lay up to a hundred eggs in a day, and those eggs develop into mature adult flies within 10 to 12 days. A third reason is the simplicity of the fruit fly’s genome, which only has four pairs of chromosomes compared to the 23 in humans. And on a logistical note, the male and female flies are easy to tell apart (genetic studies often require separating males and females, which isn’t an easy feat in all organisms).

Continue reading “Research Organism Superheroes: Fruit Flies”

RISE-ing Stars From Northern Arizona University

0 comments
Chantel wearing a traditional Native American dress and holding a graduation cap.
Chantel Tsosie at her college graduation, wearing her Tribe’s formal, traditional rug dress that her grandmother made. Credit: Courtesy of Chantel Tsosie.

“Science is for everyone. It’s in everything. It exists in cultures everywhere,” says Chantel Tsosie, a master’s student in the NIGMS-supported Research Initiative for Scientific Enhancement (RISE) program at Northern Arizona University (NAU) in Flagstaff. The program aims to prepare a diverse group of students for research careers through culturally relevant support, hands-on research experiences, and a tailored curriculum.

Chantel started her bachelor’s studies at NAU as a dental hygiene major and later changed her focus to biomedical sciences. “I’m from the Navajo Nation, and growing up on the reservation, I wasn’t really exposed to research as a career. At NAU, I began taking classes like microbiology and chemistry and found that I loved the lab portions of those. I met scientists who were Indigenous and really started looking up to them,” she says. When a faculty member brought RISE to her attention, she was immediately interested and reached out to its leaders, Catherine Propper, Ph.D., and Anita Antoninka, Ph.D.

Continue reading “RISE-ing Stars From Northern Arizona University”

How Can the Immune System Go Awry?

0 comments
This post is part of a miniseries on the immune system. Be sure to check out the other posts in this series that you may have missed.

The immune system is designed to closely monitor the body for signs of intruders that may cause infection. But what happens if it malfunctions? Overactive and underactive immune systems can both have negative effects on your health.

Continue reading “How Can the Immune System Go Awry?”

Inspiring the Next Generation of Scientists Through CityLab

0 comments
CityLab logo. The name CityLab written over an outline of a city inside an Erlenmeyer flask.
Credit: CityLab.

“Many of the students we work with don’t have access to a laboratory through their local schools. For them, CityLab is their first exposure to a laboratory environment—these are hugely important moments for these kids,” says Carl Franzblau, Ph.D., the founder of CityLab at Boston University (BU). CityLab was established more than 30 years ago as a science education outreach program for precollege students and teachers through a partnership between the Chobanian & Avedisian School of Medicine and the Wheelock College of Education & Human Development at BU.

“Since our first Science Education Partnership Award (SEPA) grant in 1991, our mission has been to inspire students to consider careers in the biomedical sciences and broaden the opportunities that are available to them,” says Carla Romney, D.Sc., the director of research for CityLab. Continuous SEPA funding since 1991 has allowed CityLab to fulfill its mission and provide students with state-of-the-art biotechnology laboratory facilities and curricula.

Continue reading “Inspiring the Next Generation of Scientists Through CityLab”

Ring In the New Year With Basic Research

0 comments

Empowering basic biomedical research, which focuses on understanding how living systems work, is one of NIGMS’ main goals. This type of research not only helps us learn how our bodies and those of other organisms function but also lays the foundation for advances in disease diagnosis, treatment, and prevention.

We’re excited to see what the upcoming year has in store for the field! In preparation, we’re highlighting what NIGMS-supported scientists had to say in 2023 about the many merits of basic research. Also check out the links to the Biomedical Beat posts that feature them if you haven’t already.

Continue reading “Ring In the New Year With Basic Research”

Seeking Success in Science Through NIH-Funded Training

0 comments
A headshot of Hasset Nurelegne.
Credit: Courtesy of Hasset Nurelegne.

“What’s great about a career in research is that there are so many paths you can take. I get so excited for the future when I think about all the open doors ahead of me,” says Hasset Nurelegne, a senior at Emory University in Atlanta, Georgia. Hasset is majoring in neuroscience and behavioral biology (NBB) as well as English.

Since her first year on campus, Hasset has been an active participant in an NIGMS-funded program at Emory that aims to develop a diverse pool of scientists, the Initiative for Maximizing Student Development (IMSD) (which is now just for graduate students; the Maximizing Access to Research Careers [MARC] program is now available for undergraduates). The Emory IMSD has provided Hasset and other trainees with financial assistance for year-round research experiences and a support system for professional development skills and responsible conduct of research.

Continue reading “Seeking Success in Science Through NIH-Funded Training”

Science Snippet: Zooming In on Nanoparticles

0 comments
A circle divided into six different, brightly colored slices, each with a different style of nanoparticle. In the center is a gray circle with the word nanoparticles.
Nanoparticles come in many different shapes and configurations. Credit: Adapted from Stevens, et. al., under Creative Commons License 4.0.

Nanoparticles may sound like gadgets from a science fiction movie, but they exist in real life. They’re particles of any material that are less than 100 nanometers (one-billionth of a meter) in all dimensions. Nanoparticles appear in nature, and humans have, mostly unknowingly, used them since ancient times. For example, hair dyeing in ancient Egypt involved lead sulfite nanoparticles, and artisans in the Middle Ages added gold and silver nanoparticles to stained-glass windows. Over the past several decades, researchers have studied nanoparticles for their potential uses in many fields, from computer engineering to biology.

A nanoparticle’s properties can differ significantly from those of larger pieces of the same material. Properties that may change include:

Continue reading “Science Snippet: Zooming In on Nanoparticles”

What Is the Immune System?

0 comments
This post is the first in our miniseries on the immune system. Be sure to check out the other posts in this series!
A sphere with evenly spaced blue projections and a pink core.
A computer-generated image of the rotavirus, a virus that commonly causes illness in children through inflammation of the stomach and intestines. Credit: Bridget Carragher, The Scripps Research Institute, La Jolla, California.

What do antibodies, mucus, and stomach acid have in common? They’re all parts of the immune system!

The immune system is a trained army of cells, tissues, and organs that work together to block, detect, and eliminate harmful insults to your body. It can protect you from invaders like bacteria, viruses, fungi, and parasites.

Innate and Adaptive

The immune system is often thought of as two separate platoons: the innate immune system and the adaptive immune system. Although these two platoons have different jobs and are made up of soldiers with different specialties, they work together to prevent infections.

Continue reading “What Is the Immune System?”

Award-Winning Safety Training Videos Showcase Inclusivity in the Lab

0 comments

Virginia Commonwealth University’s (VCU’s) Center on Health Disparities and safety and risk management department in Richmond teamed up to develop a series of six lab safety training videos with supplemental funding to their NIGMS-funded Initiative for Maximizing Student Development (IMSD) program. The videos cover topics such as safety culture, biosafety, chemical safety, and emergency response, but what sets them apart is how they showcase diversity and inclusion in the lab.

The first video in the safety training series describes the importance of maintaining positive safety culture, which includes people’s perceptions and attitudes toward safety. This video, along with the other five, is on our NIGMS laboratory safety training and guidelines webpage.

Continue reading “Award-Winning Safety Training Videos Showcase Inclusivity in the Lab”

Making Microprotein Discoveries With Alan Saghatelian

0 comments
A headshot of Dr. Alan Saghatelian.
Credit: Courtesy of Dr. Alan Saghatelian.

“There aren’t many professions that can provide this much opportunity for learning, especially when it comes to understanding how our bodies work. I really love what I do—I wouldn’t trade it for anything,” says Alan Saghatelian, Ph.D., a professor in the Clayton Foundation Laboratories for Peptide Biology at the Salk Institute for Biological Studies in La Jolla, California. From studying new facts and experimental techniques to adopting new ways of thinking, researchers never stop learning, and Dr. Saghatelian credits his love for learning and exploring as reasons why he’s perfectly suited for science. He’s used these passions to build a successful career in biochemistry.

From Chemistry to Biology

Dr. Saghatelian’s love for chemistry began when he was young. He was drawn to how predictable it could be: Mix two chemical compounds in the same way and they’ll always combine to form the same substance, as dictated by the rules of chemistry.

Continue reading “Making Microprotein Discoveries With Alan Saghatelian”