Tag: Proteins

Science Snippet: Examining Enzymes

0 comments
An enzyme shown as a connected complex of colored ribbons and flat sheets.
Structure of a pyruvate kinase, an enzyme that adds a phosphate group to adenosine diphosphate (ADP) to make adenosine triphosphate (ATP). Credit: PDB 7UEH.

Every day, our cells must produce all the various molecules they need to stay alive. But the chemical reactions to create these molecules can’t occur without help—which is where enzymes come in. Enzymes are biological catalysts, meaning they speed up the rate of specific chemical reactions by reducing the amount of energy needed for the reaction to occur. Most enzymes are proteins, but some RNA molecules can also act as enzymes.

Thousands of different enzymes catalyze the vast range of reactions that take place within cells, but each enzyme typically supports one of the following types of tasks:

Continue reading “Science Snippet: Examining Enzymes”

Cool Images: Radiant in Red

0 comments

Happy Valentine’s Day! In place of red roses, we hope you’ll accept a bouquet of beautiful scientific images featuring rich, red hues. Be sure to click all the way through to see the festive protein flowing through your blood!

For more scientific photos, illustrations, and videos in all the colors of the rainbow, visit our image and video gallery.

Continue reading “Cool Images: Radiant in Red”

Making Microprotein Discoveries With Alan Saghatelian

0 comments
A headshot of Dr. Alan Saghatelian.
Credit: Courtesy of Dr. Alan Saghatelian.

“There aren’t many professions that can provide this much opportunity for learning, especially when it comes to understanding how our bodies work. I really love what I do—I wouldn’t trade it for anything,” says Alan Saghatelian, Ph.D., a professor in the Clayton Foundation Laboratories for Peptide Biology at the Salk Institute for Biological Studies in La Jolla, California. From studying new facts and experimental techniques to adopting new ways of thinking, researchers never stop learning, and Dr. Saghatelian credits his love for learning and exploring as reasons why he’s perfectly suited for science. He’s used these passions to build a successful career in biochemistry.

From Chemistry to Biology

Dr. Saghatelian’s love for chemistry began when he was young. He was drawn to how predictable it could be: Mix two chemical compounds in the same way and they’ll always combine to form the same substance, as dictated by the rules of chemistry.

Continue reading “Making Microprotein Discoveries With Alan Saghatelian”

Copper Keeps Us Going

0 comments

Copper pipes, copper wires, copper…food? Copper is not only a useful metal for conducting electricity, but it’s also an essential element we need in our bodies for a variety of important activities—from metabolizing iron to pigmenting skin.

A graphic showing copper’s symbol Cu, atomic number 29, and atomic weight 63.546, all connected by lines to illustrations of the Statue of Liberty, a lightning bolt labeled “conductor,” and a crab labeled “blue blood.” New York’s Statue of Liberty is coated in 80 tons of copper, and oxidation causes its green color. Copper is an excellent conductor of electricity. It’s used in wiring, electronics, and lightning conductors. Crustaceans use copper complexes to transport oxygen in their blood, giving it a blue color. Across the bottom is the logo for the Royal Society of Chemistry celebrating IYPT 2019, the Compound Interest logo, and #IYPT2019. Copper is required to keep your body going. Enzymes that use copper are called cuproenzymes, and they catalyze a wide range of reactions, including making neurotransmitters and connective tissue. The element is found on the Statue of Liberty’s covering, in wiring and electronics, and in the blue blood of crustaceans. Credit: Compound Interest CC BY-NC-ND 4.0. Click to enlarge.
Continue reading “Copper Keeps Us Going”

Pump Up the Potassium

0 comments

The element potassium plays a pivotal role in our bodies. It’s found in all our cells, where it regulates their volume and pressure. To do this, our bodies carefully control potassium levels so that the concentration is about 30 times higher inside cells than outside. Potassium works closely with sodium, which regulates the extracellular fluid volume and has a higher concentration outside cells than inside. These concentration differences create an electrochemical gradient, or a membrane potential.

A graphic showing potassium’s symbol K, atomic number 19, and atomic weight 39.098 connected by lines to illustrations of soap, a nerve cell, and a banana. Potassium hydroxide is used to make liquid soaps. Potassium compounds are also used in fertilizers. In humans, potassium ions regulate blood pressure and transmission of nerve impulses. The potassium-40 isotope causes low level radioactivity in bananas and in humans and animals. Across the bottom of the graphic is the logo for the Royal Society of Chemistry celebrating IYPT 2019, the Compound Interest logo, and #IYPT2019. Potassium is the primary regulator of the pressure and volume inside cells, and it’s important for nerve transmission, muscle contraction, and more. Credit: Compound Interest CC BY-NC-ND 4.0. Click to enlarge.
Continue reading “Pump Up the Potassium”

Career Conversations: Q&A With Physiologist Elimelda Moige Ongeri

0 comments
A headshot of Dr. Ongeri.
Credit: Courtesy of Dr. Elimelda Moige Ongeri.

A career path in science is rarely clear cut and linear, which Elimelda Moige Ongeri, Ph.D., can attest adds to its excitement. She went from working in animal reproductive biology to studying proteins involved in inflammation and tissue injury. Dr. Ongeri is also currently dean of the Hairston College of Health and Human Sciences and professor of physiology at North Carolina Agricultural and Technical State University (NC A&T) in Greensboro. In this interview, she shares details of her career, including a change in research focus to human physiology; her goals for the future; and advice for students.

Q: How did you first become interested in science?

A: I was born and raised in Kenya, and, at that time, junior high students were required to select a path to pursue (e.g., the arts or the sciences) and three specific subjects to focus on. My teachers encouraged me to pursue the science path, and I eventually chose to focus on biology, chemistry, and math. Math was my favorite subject at the time, but I didn’t feel that a math degree could lead to many job opportunities, so I chose to pursue biomedical science.

Continue reading “Career Conversations: Q&A With Physiologist Elimelda Moige Ongeri”

Career Conversations: Q&A With Biochemist Prabodhika Mallikaratchy

1 comment
A headshot of Dr. Mallikaratchy.
Credit: CUNY School of Medicine.

“One of the biggest things I hope for in my career is that in 20 years, I still feel the same joy and enthusiasm for research and training that I feel now,” says Prabodhika Mallikaratchy, Ph.D., a professor in the department of molecular, cellular, and biomedical sciences at the City University of New York (CUNY) School of Medicine. Dr. Mallikaratchy talks with us about her career path, research on developing new immunotherapies and molecular tools using nucleic acids, and her belief in the importance of being passionate about your career.

Q: How did you first become interested in science?

A: Growing up in Sri Lanka, I was always a curious child. I remember being drawn to science and math, but there was no particular incident that sparked my interest. By the time I reached high school, though, I had become especially interested in chemistry.

Continue reading “Career Conversations: Q&A With Biochemist Prabodhika Mallikaratchy”

Science Snippet: The Power of Proteins

0 comments

Some might think that protein is only important for weightlifters. In truth, all life relies on the activity of protein molecules. A single human cell contains thousands of different proteins with diverse roles, including:

A dense network of blue, green, yellow, and red weblike structures along a border of a cell.
Actin proteins in a cell’s cytoskeleton. Credit: Xiaowei Zhuang, HHMI, Harvard University, and Nature Publishing Group.
  • Providing structure. Proteins such as actin make up the three-dimensional cytoskeleton that gives cells structure and determines their shapes.
  • Aiding chemical reactions. Many proteins are biological catalysts called enzymes that speed up the rate of chemical reactions by reducing the amount of energy needed for the reactions to proceed. For example, lactase is an enzyme that breaks down lactose, a sugar found in dairy products. Those with lactose intolerance don’t produce enough lactase to digest dairy.
  • Supporting communication. Some proteins act as chemical messengers between cells. For example, cytokines are the protein messengers of the immune system and can increase or decrease the intensity of an immune response.
Continue reading “Science Snippet: The Power of Proteins”

Manganese: The Magical Element?

0 comments

The element manganese is essential for human life. It’s aptly named after the Greek word for magic, and some mysteries surrounding its role in the body still exist today—like how our bodies absorb it, if very high or low levels can cause illness, or how it might play a role in certain diseases.

A graphic showing manganese’s symbol Mn, atomic number 25, and atomic weight 54.938 connected by lines to illustrations of steel railways, a bone, and a drinking can. Manganese steel contains ~13 percent manganese. It’s very strong and used for railways, safes, and prison bars. Manganese is essential for organisms. It’s needed for strong bones, and many enzymes also contain it. Drink cans are made with an alloy of aluminum and manganese, which helps prevent corrosion. Across the bottom of the graphic are the logo for the Royal Society of Chemistry celebrating IYPT 2019, the Compound Interest logo, and #IYPT2019. Manganese is necessary for metabolism, bone formation, antioxidation, and many other important functions in the body. The element is found in strong steel, bones and enzymes, and drink cans. Credit: Compound Interest CC BY-NC-ND 4.0. Click to enlarge.
Continue reading “Manganese: The Magical Element?”

Got Calcium?

2 comments

Someone’s hand moving to scroll through this blog post is possible because of a mineral that both gives bones their strength and allows muscles to move: calcium. As the most abundant mineral in our bodies, it’s essential for lots of important functions. It’s found in many foods, medicines, and dietary supplements.

A graphic showing calcium’s symbol “Ca”, atomic number, and atomic weight connected by lines to illustrations of teeth and bones, cheese, and a cement-mixing truck (calcium carbonate is used in construction). Calcium keeps your bones strong, allows your muscles to move, and is important for many other bodily functions. The element is found in foods, medicines, and the world around us. Credit: Compound Interest CC BY-NC-ND 4.0. Click to enlarge.
Continue reading “Got Calcium?”