RISE-ing Above: Embracing Physical Disability in the Lab

This is the fourth post in a new series highlighting NIGMS’ efforts toward developing a robust, diverse and well-trained scientific workforce.

Marina Nakhla
Marina Z. Nakhla
Hometown: West Los Angeles, California
Blogs For: Ottobock “Life in Motion,” Exit icon a forum for the amputee community, where she’s covered topics ranging from medical insurance to dating.
Influential Book: The Catcher in the Rye by J.D. Salinger
Favorite TV Show: Grey’s Anatomy
Languages: English and Arabic
Unusal Fact: Gets a new pair of legs every year or two

Nakhla at her graduation from California State University, Northridge, where she graduated with a B.A. in psychology with honors. She is currently a second-year master’s student there studying clinical psychology. Credit: Christina Nakhla.

When Marina Z. Nakhla was just a toddler, she lost both of her legs. Now 22 and a graduate student at California State University, Northridge (CSUN), she has hurdled obstacles most of us never face.

Nakhla conducts research to better understand the decrease in mental abilities experienced by people with brain diseases. She is a scholar in CSUN’s Research Initiative for Scientific Enhancement (RISE) Program. This training program aims to enrich and diversify the pool of future biomedical researchers. Her long-term goal is to earn a Ph.D., to work as a clinical psychologist and to continue conducting research in neuropsychology. Along the way, she aspires to be a leader to her peers and an advocate for underrepresented people, particularly those with disabilities.

I first learned about Nakhla from an email message titled “CSUN RISE Student.” The acronym, pronounced “see [the] sun rise,” is an apt motto for a program that prepares students for a bright future in science. I believe it also encapsulates Nakhla’s positive, forward-looking mindset, despite the obstacles she has faced. Here’s her story:

Q: What got you interested in science?

A: Growing up, I was always drawn to science. I enjoyed learning how things work. I first became interested in psychology after reading The Catcher in the Rye in high school. I was so intrigued by Holden Caulfield’s thought processes and experiences of alienation and depression, despite the fact that he came from a wealthy family and went to a good school.

Why are some people more prone to experiencing depression? Why are some peoples’ thought processes so different than others? What factors contribute to resiliency? How can we help these people? These questions also made me think about the significant adversities that I had personally experienced. My desire to know more about the brain, as well as my personal experiences, instilled my passion to make a difference in others’ lives through science. Continue reading

Cool Image: Biological Bubbles

Cells are in the process of pinching off parts of their membranes to produce bubbles filled with a mix of proteins and RNAs. Researchers are harnessing this process to develop better drug delivery techniques. The image, courtesy of Chi Zhao, David Busch, Connor Vershel and Jeanne Stachowiak of the University of Texas at Austin, was entered in the Biophysical Society’s 2017 Art of Science Image contest and featured on the NIH Director’s Blog.

This fiery-looking image shows animal cells caught in the act of making bubbles, or blebbing.

Certain cells regularly pinch off parts of their membranes to produce bubbles filled with a mix of proteins and RNAs. The green and yellow portions in the image show the cell membranes as they separate from the cell’s skeleton and bleb from the main cell. The bubbles, shown in red, are called plasma-derived membrane vesicles, or PMVs. PMVs can travel to other parts of the body where they may aid in cell-to-cell communication.

The University of Texas at Austin researchers who produced this image are exploring ways to use PMVs to deliver medicines to precise locations in the body.

Blebbing for Drug Delivery

Drug delivery research tries to find ways to carry medicines to only the tissues in the body that need them with the goal of reducing side effects. To achieve this, delivery methods need to recognize just the cells they target, usually by finding a unique protein on the cell’s surface. Scientists can make proteins that recognize and attach to targets such as cancer cells, but they’ve had trouble attaching medicines to the proteins they made. To get around this problem, scientists could employ PMV-making cells in a laboratory, perhaps even cells taken from a patient who is receiving treatment. They could engineer the cells to make the targeting proteins and then attach the targeting proteins to the PMV surface. The cell’s own protein-making machinery does the hardest job.

The Texas scientists have engineered such donor cells with proteins on their surfaces that precisely target certain kinds of breast cancer cells. When the donor cells are induced to bleb, they produce PMVs laden with the target proteins that locate and bind to the cancer cells.

Researchers hope that eventually PMVs with surface targeting proteins could be filled with medicines and infused into the patient to deliver the drugs specifically to cancerous cells while leaving healthy tissues untouched. Research will continue to investigate this possibility.

This research was funded in part by NIH under grant R01GM112065.