Category: Being a Scientist

Q&A With Dylan Burnette: Muscle Cells, Cell Movement, and Microscopy

2 comments
A headshot of Dr. Dylan Burnette.
Courtesy of Dr. Dylan Burnette.

“We scientists know very little of what can be known—I find that invigorating,” says Dylan Burnette, Ph.D., an associate professor of cell and developmental biology at Vanderbilt University School of Medicine in Nashville, Tennessee. “Most people find it exhausting, but I’m comfortable with not knowing all of biology’s secrets.” In an interview, Dr. Burnette shared his lab’s work on muscle cells, the knowledge he hopes readers take away from his research, and some advice to future scientists about being comfortable being wrong.

Q: How did you first become interested in science?

A: Unlike with other subjects (it took me a long time to learn how to read), I excelled at science. In third-grade science class, I knew every answer on the tests. It didn’t occur to me at the time, but I did well because I found it interesting. I decided I wanted to become a medical doctor that year. Back then, doctors were the only type of person who I thought did any type of science.

Continue reading “Q&A With Dylan Burnette: Muscle Cells, Cell Movement, and Microscopy”

Bridging the Representation Gap in Biomedical Research

1 comment

“We hope that students come out of our program feeling like they’re part of a community. Many of us feel inadequate or struggle in some way during graduate school—it can be a challenging time. I want to build a community that our students can always come back to for support,” says Elana Ehrlich, Ph.D., the co-director of the Bridges to the Doctorate Research Training Program (B2D) at Towson University (TU), in Towson, Maryland, alongside Michelle Snyder, Ph.D..

The TU B2D is one of several NIGMS-supported B2Ds, which are dedicated to developing a diverse pool of well-trained biomedical scientists who will transition from master’s degree programs to research-based doctoral degree programs. B2Ds partner with Ph.D.-granting institutions to help aid students in the master’s-to-Ph.D. transition. Students in all B2Ds earn a thesis-based master’s degree and receive training to design, conduct, and analyze experiments effectively. At the same time, these students learn how to build successful applications for doctoral programs, whether they apply to the B2D’s partner school or another Ph.D. program.

Continue reading “Bridging the Representation Gap in Biomedical Research”

What Is Pharmacology?

0 comments
A collage of different cartoon images showing scientists working across a spectrum of basic science, chemistry, biology, research, genetics, and medicine, illustrated by images of an EKG readout, test tubes and a pipette, a syringe and medicine bottle, a chemical structure, a microscope, a pill bottle and pill, a data chart, a hospital, a DNA strand, and a human silhouette.
Credit: iStock.

Pharmacology is the study of how molecules, such as medicines, interact with the body. Scientists who study pharmacology are called pharmacologists, and they explore the chemical properties, biological effects, and therapeutic uses of medicines and other molecules. Their work can be broken down into two main areas:

  • Pharmacokinetics is the study of how the body acts on a medicine, including its processes of absorption, distribution, metabolism, and excretion (ADME).
  • Pharmacodynamics is the study of how a medicine acts in the body—both on its intended target and throughout all the organs and tissues in the body.
Continue reading “What Is Pharmacology?”

Investigating the Secrets of Cancer-Causing Viruses

0 comments
A portrait of Dr. Mandy Muller.
Credit: Courtesy of Dr. Mandy Muller.

While she was in graduate school, Mandy Muller, Ph.D., became intrigued with viruses that are oncogenic, meaning they can cause cancer. At the time, she was researching human papillomaviruses (HPVs), which can lead to cervical and throat cancer, among other types. Now, as an assistant professor of microbiology at the University of Massachusetts (UMass) Amherst, Dr. Muller studies Kaposi sarcoma-associated herpesvirus (KSHV), which causes the rare AIDS-associated cancer Kaposi sarcoma.

A Continental Change

Dr. Muller has come a long way, both geographically and professionally, since her childhood in France. She was the first person in her family to graduate from high school, where she excelled in science, and went on to attend École Normale Supérieure (ENS) de Lyon, a research-oriented undergraduate institution in Lyon, France. “We spent weeks at a time in laboratory-based classes, working in real labs. That’s when I realized people could do research full-time, which caught my attention,” says Dr. Muller. She double-majored in biology and geology, and soon chose to focus her career on immunology and virology.

Continue reading “Investigating the Secrets of Cancer-Causing Viruses”

Career Conversations: Q&A With Biomedical Engineer Elizabeth Wayne

2 comments
A portrait image of Dr. Elizabeth Wayne.
Courtesy of Dr. Elizabeth Wayne.

“It’s so fun to try to make meaning from a confusing experimental result and talk to other scientists who are excited by the same questions you are,” says Elizabeth Wayne, Ph.D., an assistant professor of biomedical engineering and chemical engineering at Carnegie Mellon University (CMU) in Pittsburgh, Pennsylvania. We talked to Dr. Wayne about her career trajectory, research on immune cells, and belief that scientists can change the world.

Q: How did you first become interested in science?

Continue reading “Career Conversations: Q&A With Biomedical Engineer Elizabeth Wayne”

Building a Digital Immune System

1 comment
A headshot of Dr. Helikar.
Credit: Courtesy of Dr. Tomas Helikar.

The power of computer code has been a longtime fascination for Tomas Helikar, Ph.D., a professor of biochemistry at the University of Nebraska-Lincoln (UNL). In college, when he learned he could use that power to help researchers better understand biology and improve human health, Dr. Helikar knew he’d found his ideal career. Since then, he’s built a successful team of scientists studying the ways we can use mathematical models in biomedical research, such as creating a digital replica of the immune system that could predict how a patient will react to infectious microorganisms and other pathogenic insults.

A Career in Computational Biology

Dr. Helikar first became involved in computer science by learning how to build a website as a high school student. He was amazed to learn that simple lines of computer code could be converted into a functional website, and he felt empowered knowing that he had created a real product from his computer.

Continue reading “Building a Digital Immune System”

Career Conversations: Q&A With Physiologist Elimelda Moige Ongeri

0 comments
A headshot of Dr. Ongeri.
Credit: Courtesy of Dr. Elimelda Moige Ongeri.

A career path in science is rarely clear cut and linear, which Elimelda Moige Ongeri, Ph.D., can attest adds to its excitement. She went from working in animal reproductive biology to studying proteins involved in inflammation and tissue injury. Dr. Ongeri is also currently dean of the Hairston College of Health and Human Sciences and professor of physiology at North Carolina Agricultural and Technical State University (NC A&T) in Greensboro. In this interview, she shares details of her career, including a change in research focus to human physiology; her goals for the future; and advice for students.

Q: How did you first become interested in science?

A: I was born and raised in Kenya, and, at that time, junior high students were required to select a path to pursue (e.g., the arts or the sciences) and three specific subjects to focus on. My teachers encouraged me to pursue the science path, and I eventually chose to focus on biology, chemistry, and math. Math was my favorite subject at the time, but I didn’t feel that a math degree could lead to many job opportunities, so I chose to pursue biomedical science.

Continue reading “Career Conversations: Q&A With Physiologist Elimelda Moige Ongeri”

Investigating Bacteria’s CRISPR Defense System to Improve Human Health

0 comments
A headshot of Dr. Andrew Santiago-Frangos.
Credit: Adrian Sanchez Gonzales.

The earliest Andrew Santiago-Frangos, Ph.D., remembers being interested in science was when he was about 8 years old. He was home sick and became engrossed in a children’s book that explained how some bacteria and viruses cause illness. To this day, his curiosity about bacteria persists, and he’s making discoveries about CRISPR—a system that helps bacteria defend against viruses—as a postdoctoral researcher and NIGMS-funded Maximizing Opportunities for Scientific and Academic Independent Careers (MOSAIC) scholar at Montana State University (MSU) in Bozeman.

Becoming a Biologist

Although Dr. Santiago-Frangos wanted to become a scientist from a young age and always found biology interesting, by the time he was attending high school in his native country of Cyprus, he had developed a passion for physics and thought he’d pursue a career in that field. However, working at a biotechnology company for a summer changed his mind. “That experience made me want to dive into biology more deeply because I could see how it could be directly applied to human health. Physics can also be applied to human health, but, at least at that time, biology seemed to me like a more direct way to help humanity,” says Dr. Santiago-Frangos.

Continue reading “Investigating Bacteria’s CRISPR Defense System to Improve Human Health”

Using Robots and Artificial Intelligence to Search for New Medicines

0 comments
A portrait image of Dr. Gormley, wearing a white lab coat in the laboratory.
Courtesy of Dr. Adam Gormley.

Adam Gormley, Ph.D., describes himself as a creative and adventurous person—albeit, not creative in the traditional sense. “Science allows me to be creative; to me, it’s a form of art. I love being outdoors, going on sailing trips, and spending time adventuring with my family. Research is the same—it’s an adventure. My creative and adventurous sides have combined into a real love for science,” he says. Dr. Gormley currently channels his passion for science into his position as an assistant professor of biomedical engineering at Rutgers University in Piscataway, New Jersey.

Learning How the World Works

Both of Dr. Gormley’s parents worked in science and medicine—his mother as a medical doctor and his father as a physician-scientist—and they instilled in him a curiosity for how the world worked. When he was young, Dr. Gormley and his parents would tinker with cars or boats and fix broken household items together, all the while talking about the individual parts and how they functioned as a whole. “I always had that technical, hands-on side of me,” he says.

Continue reading “Using Robots and Artificial Intelligence to Search for New Medicines”