Meet a Globe-Trotting Chemist and Builder of “Smart Molecules”

Janarthanan Jayawickramarajah
Jayawickramarajah taking a “selfie” with “The Bean,”
a large, highly reflective sculpture in Chicago
Credit: Janarthanan Jayawickramarajah
Janarthanan Jayawickramarajah
Born in: Kandy, Sri Lanka
Job site: Tulane University, New Orleans, Louisiana
Alternate career choice: Anthropologist
Favorite sports teams: Sri Lanka national cricket team, University of North Carolina at Chapel Hill Tar Heels basketball, New Orleans Saints football
Favorite weekend activity: Strolling through parks with his wife and two kids and stopping for coffee and beignets (a New Orleans treat, a lot like a doughnut covered in powdered sugar)

In a way, Janarthanan Jayawickramarajah is like an architect. But rather than sketching plans for homes or buildings, he creates molecules designed to detect and destroy cancer cells. Continue reading

Sharing ‘Behind the Scene’ Stories About Scientific Discoveries

If a picture is worth a thousand words, what’s a video worth? For cell biologist Ron Vale, it’s priceless.

Screen shot from the video
In this iBiology Exit icon “discovery talk,” Ron Vale describes the twists and turns that led him to unexpected findings, including a motor protein involved in important cellular processes.

In 2006, Vale started a video-based science outreach project called iBiology Exit icon to give people around the world broader access to research seminars. The free online videos, which cover a range of biomedical fields and career-related topics, take viewers behind the scenes of scientific findings and convey the excitement of the discovery process.

While geared mostly for undergraduate students, graduate students and postdoctoral researchers, the videos are also a rich resource for anyone who wants a better understanding of many biomedical areas, including those we cover on this blog. Continue reading

Meet Sharon Cobb: Aiming to Understand Pain in Aging African Americans

Sharon Cobb
Credit: UCLA School of Nursing
Sharon Cobb
Field: Nursing
Raised in: Los Angeles, California
Studied at: University of California, Berkeley; Charles R. Drew University; and University of California, Los Angeles
Musical skill: She can play the triangle if someone asks
If she wasn’t a scientist, she would be: An event planner for celebrity weddings

A single, life-defining moment is what often influences our choice of career paths. But for Sharon Cobb, three significant events empowered her to want to produce a change in society for those affected by health disparities.

First, in high school, she was offered the chance to shadow an OB/GYN nurse practitioner at King/Drew Medical Center in Los Angeles. There, Cobb saw firsthand the need for health care among some of the city’s most vulnerable residents and the challenges involved in delivering that care. This experience led her to pursue a career in nursing. Continue reading

Help Spread the Word About Cell Day

Editor’s Note: This post originally appeared on our Feedback Loop blog. We’re sharing it here because we think you or others you know may be interested in participating in this science education event.

Cell Day 2015On November 5, we’ll host my favorite NIGMS science education event: Cell Day! As in previous years, we hope this free, interactive Web chat geared for middle and high school students will spark interest in cell biology, biochemistry and research careers. Please help us spread the word by letting people in your local schools and communities know about this special event and encouraging them to register. It runs from 10 a.m. to 3 p.m. EST and is open to all.

As the moderator of these Cell Day chats, I’ve fielded a lot of great questions, including “Why are centrioles not found in plant cells?” and “If you cut a cell in half and then turn it upside down will the nucleus, ribosomes, and other parts of the cell fall out?” It’s always amazing to hear what science students are thinking or wondering about. I’m looking forward to seeing what fantastic questions we’ll get this year!

Meet Sarkis Mazmanian and the Bacteria That Keep Us Healthy

Sarkis K. Mazmanian
Credit: New York Academy of Sciences
Sarkis K. Mazmanian, Ph.D.
Born in: The country of Lebanon, moved to Los Angeles when he was 1
Fields: Microbiology, immunology, neuroscience
Works at: California Institute of Technology
Awards won: Many, including the MacArthur Foundation “Genius” grant
Most proud of: The success of his trainees! “There’s nothing that comes close to the gratification and joy I feel when a student or research fellow goes on to be an independent scientist.”
When not in the lab or mentoring students, he’s: Spending time with his family, including his 1-year-old-son or going for an occasional run

As a child, Sarkis Mazmanian frequently took things apart to figure out how they worked. At the age of 12, he dismantled his family’s entire television set—to the dismay of his parents and the unsuccessful TV repairman.

“I wasn’t aware of this at the time, but maybe that was some sort of a foreshadowing that I would enjoy science,” Mazmanian says. “Scientists take biological systems apart to understand how they work.”

Mazmanian never thought he’d become a microbiologist, let alone a leading expert in the field. He began studying microbiology at the University of California, Los Angeles (UCLA), because it was the major that allowed him to do the most hands-on research. But as soon as he entered the field, he fell in love with the complexities of microbial organisms and the efficiency of their functions. Continue reading

From Basic Research to Bioelectronic Medicine

Kevin Tracey
Kevin J. Tracey of the Feinstein Institute for Medical Research, the research branch of the North Shore-LIJ Health System, helped launch a new discipline called bioelectronic medicine. Credit: North Shore-LIJ Studios.

By showing that our immune and nervous systems are connected, Kevin J. Tracey Exit icon of the North Shore-LIJ Health System’s Feinstein Institute for Medical Research helped launch a new discipline called bioelectronic medicine. In this field, scientists explore how to use electricity to stimulate the body to produce its own disease-fighting molecules.

I spoke with Tracey about his research, the scientific process and where bioelectronic medicine is headed next.

How did you uncover the connection between our immune and nervous systems?

My lab was testing whether a chemical we developed called CNI-1493 could stop immune cells from producing inflammation-inducing molecules called TNFs in the brain of rats during a stroke. It does. But we were surprised to find that this chemical also affects neurons, or brain cells. The neurons sense the chemical and respond by sending an electrical signal along the vagus nerve, which runs from the brain to the internal organs. The vagus nerve then releases molecules that tell immune cells throughout the body to make less TNF. I’ve named this neural circuit the inflammatory reflex. Today, scientists in bioelectronic medicine are exploring ways to use tiny electrical devices to stimulate this reflex to treat diseases ranging from rheumatoid arthritis to cancer. Continue reading

Meet Nels Elde and His Team’s Amazing, Expandable Viruses

Nels Elde, Ph.D.
Credit: Kristan Jacobsen
Nels Elde, Ph.D.
Fields: Evolutionary genetics, virology, microbiology, cell biology
Works at: University of Utah, Salt Lake City
When not in the lab, he’s: Gardening, supervising pets, procuring firewood
Hobbies: Canoeing, skiing, participating in facial hair competitions

“I really look at my job as an adventure,” says Nels Elde. “The ability to follow your nose through different fields is what motivates me.”

Elde has used that approach to weave evolutionary genetics, bacteriology, virology, genomics and cell biology into his work. While a graduate student at the University of Chicago and postdoctoral researcher at the Fred Hutchinson Cancer Research Center in Seattle, he became interested in how interactions between pathogens (like viruses and bacteria) and their hosts (like humans) drive the evolution of both parties. He now works in Salt Lake City, where, as an avid outdoorsman, he draws inspiration from the wild landscape.

Outside the lab, Elde keeps diverse interests and colorful company. His best friend wrote a song about his choice of career as a cell biologist. (You can hear this song at the end of the 5-minute video Exit icon in which Elde explains his work.) Continue reading

Meet Karen Carlson

Karen Carlson
Credit: Karen Carlson
Karen Carlson
Fields: Systems biology, bacterial biofilms
Born and raised in: Alaska
Undergraduate student at: The University of Alaska, Anchorage
When not in the lab, she’s: Out and about with her 3-year-old son, friends and family
Secret talent: “I make some really good cookies.”

Karen Carlson got a surprise in her 10th grade biology class. Not only did she find out that she enjoyed science (thanks to an inspiring teacher), but, as she puts it, “I realized that I was really good at it.”

In particular, she says, “I was good at putting all the pieces [of a scientific question] together. And that’s what I had the most fun with—looking at systems: how things fit together and the flow between them.”

These are perfect interests for a budding systems biologist, which is what Carlson is on her way to becoming. She’s a senior in college on track to graduate this year with a bachelor’s degree in biology from the University of Alaska, Anchorage (UAA). Next, she plans to enroll in a master’s degree program at UAA, and eventually to pursue a Ph.D. in a biomedical field. Continue reading

Meet Maureen L. Mulvihill

Maureen L. Mulvihill, Ph.D.
Credit: Actuated Medical, Inc.
Maureen L. Mulvihill, Ph.D.
Fields: Materials science, logistics
Works at: Actuated Medical, Inc., a small company that develops medical devices
Second job (volunteer): Bellefonte YMCA Swim Team Parent Boost Club Treasurer
Best skill: Listening to people
Last thing she does every night: Reads to her 7- and 10-year-old children until “one of us falls asleep”

If you’re a fan of the reality TV show Shark Tank, you tune in to watch aspiring entrepreneurs present their ideas and try to get one of the investors to help develop and market the products. Afterward, you might start to think about what you could invent.

Maureen L. Mulvihill has never watched the show, but she lives it every day. She is co-founder, president and CEO of Actuated Medical, Inc. (AMI), a Pennsylvania-based company that develops specialized medical devices. The devices include a system for unclogging feeding tubes, motors that assist MRI-related procedures and needles that gently draw blood.

AMI’s products rely on the same motion-control technologies that allow a quartz watch to keep time, a microphone to project sound and even a telescope to focus on a distant object in a sky. In general, the devices are portable, affordable and unobtrusive, making them appealing to doctors and patients.

Mulvihill, who’s trained in an area of engineering called materials science, says, “I’m really focused on how to translate technologies into ways that help people.” Continue reading

Meet Alfred Atanda Jr.

Alfred Atanda Jr.
Credit: Cynthia Brodoway, Nemours/Alfred I. duPont
Hospital for Children
Alfred Atanda Jr.
Fields: Pediatric orthopedic surgery, sports medicine
Works at: Nemours/Alfred I. duPont Hospital for Children
Blogs: as Philly.com’s Sports Doc at http://bit.ly/sportsdoc Exit icon
Family fact: Youngest of seven children
Musical skills: Piano and trumpet
Kitchen talent: Baking chocolate desserts for his pediatrician wife and their two young children

As a kid, Alfred Atanda loved science, sports and tinkering. He dreamed of being a construction worker or an engineer. Today, he works on one of the most complex construction projects of all: the human body.

As a pediatric orthopedic surgeon, Atanda focuses on sports medicine and injuries to children. He has a special passion for young baseball pitchers who have torn the ulnar collateral ligament (UCL) in the elbow of their throwing arm.

This sort of injury is most often caused by overuse. Many small tears accumulate over a long period, resulting in pain and slower, less accurate pitches. Decades ago, this sort of damage occurred almost exclusively in elite athletes. Now, Atanda sees it in children as young as 12 years old. He aims not only to study and treat these injuries, but also to find ways to prevent them.

His Findings

Atanda was first introduced to research on UCL injuries while working alongside team physicians for the Phillies, the professional baseball team in Philadelphia. The physicians wanted to determine whether ultrasound imaging could detect early warning signs—slight anatomical changes in the ligament—before the damage became severe enough to warrant an operation known as Tommy John surgery.

The research focused on Phillies pitchers who had no pain or other symptoms of injury. The multi-year project showed that the UCL in the throwing elbows of these players got progressively thicker and weaker compared to the same ligament in the players’ nonthrowing elbows. The scientists concluded that these physical changes are caused by prolonged exposure to professional-level pitching.

Alfred Atanda Jr. with Joe Piergrossi
Atanda examines the elbow of a young patient. Courtesy: Cynthia Brodoway, Nemours/Alfred I. duPont Hospital for Children

Atanda wondered whether ultrasound imaging could also detect early signs of UCL damage in young pitchers—those in Little League through high school. There has been a dramatic rise in the number of young pitchers who are experiencing the same injuries and undergoing the same surgery as the pros.

Atanda secured funding for this project from an Institutional Development Award (IDeA). The IDeA program builds research capacities in states like Delaware, where Atanda works, that historically have received low levels of funding from the National Institutes of Health.

Atanda’s project began about a year ago, and has examined 55 young athletes so far.

“We found similar results to what we found with the Phillies,” Atanda says, indicating that the UCL in the throwing elbows of young athletes was noticeably thicker than the UCL in the nonthrowing elbows. And the damage seems progressive, he says: “We saw that these ligaments got thicker as the pitchers got older and had more pitching experience.”

The immediate goal of this project, which he hopes to continue for another 3 years, is prophylaxis. “We’re trying to prevent any kind of overuse elbow injuries and the need for Tommy John surgeries later on,” Atanda says. He also hopes to establish quantitative correlations between pitching behavior and anatomical changes.

Atanda also has longer-term aspirations. “My goal is to change the culture in sports for young athletes in general,” he says. “I want to show there are downsides to pitching so much.”

In addition to championing pitch count limits recommended by the American Sports Medicine Institute, Atanda advises a focus away from excess competition and toward getting exercise, enjoying social inter­action, building self-confidence and having fun.

Atanda’s research is funded by the National Institutes of Health through grant P20GM103464

Content adapted from the NIGMS Findings magazine article Game Changer