Category: Tools and Techniques

Q&A With Nobel Laureate and CRISPR Scientist Jennifer Doudna

0 comments
A headshot of Dr. Doudna. Jennifer Doudna, Ph.D. Credit: University of California, Berkeley.

The 2020 Nobel Prize in Chemistry was awarded to Jennifer Doudna, Ph.D., and Emmanuelle Charpentier, Ph.D., for the development of the gene-editing tool CRISPR. Dr. Doudna shared her thoughts on the award and answered questions about CRISPR in a live chat with NIH Director Francis S. Collins, M.D., Ph.D. Here are a few highlights from the interview.

Q: How did you find out that you won the Nobel Prize?

A: It’s a little bit of an embarrassing story. I slept through a very important phone call and finally woke up when a reporter called me. I was just coming out of a deep sleep, and the reporter was asking, “What do you think about the Nobel?” And I said, “I don’t know anything about it. Who won it?” I thought they were asking for comments on somebody else who won it. And she said, “Oh my gosh! You don’t know! You won it!”

Continue reading “Q&A With Nobel Laureate and CRISPR Scientist Jennifer Doudna”

Freezing a Moment in Time: Snapshots of Cryo-EM Research

0 comments

To get a look at cell components that are too small to see with a normal light microscope, scientists often use cryo-electron microscopy (cryo-EM). As the prefix cryo- means “cold” or “freezing,” cryo-EM involves rapidly freezing a cell, virus, molecular complex, or other structure to prevent water molecules from forming crystals. This preserves the sample in its natural state and keeps it still so that it can be imaged with an electron microscope, which uses beams of electrons instead of light. Some electrons are scattered by the sample, while others pass through it and through magnetic lenses to land on a detector and form an image.

Typically, samples contain many copies of the object a scientist wants to study, frozen in a range of orientations. Researchers take images of these various positions and combine them into a detailed 3D model of the structure. Electron microscopes allow us to see much smaller structures than light microscopes do because the wavelengths of electrons are much shorter than the wavelength of light. NIGMS-funded researchers are using cryo-EM to investigate a range of scientific questions.

Caught in Translation

One cluster that is yellow, purple, and orange and another that is beige, purple, and green. 3D reconstructions of two stages in the assembly of the bacterial ribosome created from time-resolved cryo-EM images. Credit: Joachim Frank, Columbia University.

Joachim Frank, Ph.D., a professor of biochemistry and molecular biophysics and of biological sciences at Columbia University in New York, New York, along with two other researchers, won the 2017 Nobel Prize in Chemistry for developing cryo.

Dr. Frank’s lab focuses on the process of translation, where structures called ribosomes turn genetic instructions into proteins, which are needed for many chemical reactions that support life. Recently, Dr. Frank has adopted and further developed a technique called time-resolved cryo-EM. This method captures images of short-lived states in translation that disappear too quickly (after less than a second) for standard cryo-EM to capture. The ability to fully visualize translation could help researchers identify errors in the process that lead to disease and also to develop treatments.

Continue reading “Freezing a Moment in Time: Snapshots of Cryo-EM Research”

Helium: An Abundant History and a Shortage Threatening Scientific Tools

0 comments

Most of us know helium as the gas that makes balloons float, but the second element on the periodic table does much more than that. Helium pressurizes the fuel tanks in rockets, helps test space suits for leaks, and is important in producing components of electronic devices. Magnetic resonance imaging (MRI) machines that take images of our internal organs can’t function without helium. And neither can nuclear magnetic resonance (NMR) spectrometers that researchers use to determine the structures of proteins—information that’s important in the development of medications and other uses.

A square showing helium’s abbreviation, atomic number, and atomic weight connected by lines to illustrations of a scuba diver, a car, and a person in an MRI machine. Helium’s many uses include helping deep sea divers breathe underwater, airbags in cars to inflate, and magnets in MRI scanners to work properly. Credit: Compound Interest.
CC BY-NC-ND 4.0 Link to external web site. Click to enlarge
Continue reading “Helium: An Abundant History and a Shortage Threatening Scientific Tools”

Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke

0 comments

Whether animals are looking for food or mates, or avoiding pathogens and predators, they rely on biosensors—molecules that allow them to sense and respond to their environments. Christina Dawn Smolke, Ph.D. Link to external web site, a professor of bioengineering at Stanford University in California, focuses her research on creating new kinds of biosensors to receive, process, and transmit molecular information. Her lab has built RNA molecules, or switches, that can alter gene expression based on biochemical changes they detect.

Continue reading “Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke”

The Science of Infectious Disease Modeling

1 comment

What Is Computer Modeling and How Does It Work?

Recent news headlines are awash in references to “modeling the spread” and “flattening the curve.” You may have wondered what exactly this means and how it applies to the COVID-19 pandemic. Infectious disease modeling is part of the larger field of computer modeling. This type of research uses computers to simulate and study the behavior of complex systems using mathematics, physics, and computer science. Each model contains many variables that characterize the system being studied. Simulation is done by adjusting each of the variables, alone or in combination, to see how the changes affect the outcomes. Computer modeling is used in a wide array of applications, from weather forecasting, airplane flight simulation, and drug development to infectious disease spread and containment.

Continue reading “The Science of Infectious Disease Modeling”

Cool Images: The Hidden Beauty Inside Plants

0 comments

Spring brings with it a wide array of beautiful flowers, but the interior structures of plants can be just as stunning. Using powerful microscopes, researchers can peek into the many molecular bits and pieces that make up plants. Check out these cool plant images from our Image and Video Gallery that NIGMS-funded scientists created while doing their research.

Several round structures that are yellow at the center and pink and purple around the edges and have honeycomb-like interiors. Credit: Arun Sampathkumar and Elliot Meyerowitz, California Institute of Technology.

In plants and animals, stem cells can transform into a variety of different cell types. The stem cells at the growing tip of this Arabidopsis plant will soon become flowers. Cellular and molecular biologists frequently study Arabidopsis because it grows rapidly (its entire life cycle is only 6 weeks), produces lots of seeds, and has a genome that’s easy to manipulate.

Continue reading “Cool Images: The Hidden Beauty Inside Plants”

Crowdsourcing Science: Using Competition to Drive Creativity

0 comments
Six student researchers sitting around a table and collaborating on a project. Credit: iStock.

Historically, crowdsourcing has played an important role in certain fields of scientific research. Wildlife biologists often rely on members of the public to monitor animal populations. Using backyard telescopes, amateur astronomers provide images and measurements that lead to important discoveries about the universe. And many meteorologists use data collected by citizen scientists to study weather conditions and patterns.

Now, thanks largely to advances in computing, researchers in computational biology and data science are harnessing the power of the masses and making discoveries that provide valuable insights into human health.

Continue reading “Crowdsourcing Science: Using Competition to Drive Creativity”

Advances in 3D Printing of Replacement Tissue

0 comments
A bioprint of the small air sac in the lungs with red blood cells moving through a vessel network supplying oxygen to living cells. Credit: Rice University. A bioprint of the small air sac in the lungs with red blood cells moving through a vessel network supplying oxygen to living cells. Credit: Rice University.

A team of bioengineers, funded in part by NIGMS, has devised a way to use 3D bioprinting technology to construct the small air sacs in the lungs and intricate blood vessels. Continue reading “Advances in 3D Printing of Replacement Tissue”

Interview With a Scientist – Rommie Amaro: Computational and Theoretical Model Builder

0 comments

Many researchers who search for anti-cancer drugs have labs filled with chemicals and tissue samples. Not Rommie Amaro. Her work uses computers to analyze the shape and behavior of a protein called p53. Defective versions of p53 are associated with more human cancers than any other malfunctioning protein.

Continue reading “Interview With a Scientist – Rommie Amaro: Computational and Theoretical Model Builder”

Teens Explore Science and Health through Game Design

0 comments

Educators often struggle to teach teens about sexual and reproductive health. Hexacago Health Academy (HHA) Link to external web site, an education program from the University of Chicago, leverages the fun activity of gameplay to impart these lessons to young people from Chicago’s South Side community. Funded by the Student Education Partnership Award (SEPA), part of the National Institute of General Medical Sciences (NIGMS), in 2015, HHA assists teachers in their goal of helping teen students gain awareness and control over their health and also learn about careers in STEM Link to external web site and health fields.

Woman in a black buisness suit with arms crossed standing against a wall and smiling
Melissa Gilliam, founder of Ci3. Credit: Anna Knott, Chicago Magazine.

Genesis of HHA

HHA was cofounded by Melissa Gilliam Link to external web site, a University of Chicago professor of Obstetrics/Gynecology and Pediatrics and founder of the Center for Interdisciplinary Inquiry & Innovation in Sexual and Reproductive Health (Ci3) Link to external web site. During a 2013 summer program with high school students, Gilliam and Patrick Jagoda Link to external web site, associate professor of English and Cinema & Media Studies, and cofounder of Ci3’s Game Changer Chicago Design Lab Link to external web site, introduced the students to their STEM-based alternate reality game called The Source Link to external web site, in which a young woman crowdsources player help to solve a mystery that her father has created for her.

From their experience with The Source, Gilliam and Jagoda quickly learned that students not only wanted to play games but to design them too. What followed was the Game Changer Lab’s creation of the Hexacago game board, as well as the launch of HHA, a SEPA-funded project that the lab oversees.

Hexacago Game Board

At the core of HHA is the Hexacago game board Link to external web site, which displays the city of Chicago, along with Lake Michigan, a train line running through the city, and neighborhoods gridded into a hexagonal pattern.

HHA students not only play games designed from the Hexacago board template, but also design their own games from it that are intended to inspire behavior change in health-related situations and improve academic performance.

High school students seated at a table with a glossy, laminate test model of the Hexacago game and game pieces on top of it
Credit: Ci3 at the University of Chicago.

In this way, HHA is much more than just game design and play. “Students have no idea that what they’re doing is learning. In their minds, they’re really focused on designing games,” says Gilliam. “That’s the idea behind Hexacago Health Academy: helping people acquire deep knowledge of science and health issues by putting on the hat of a game designer.” Moreover, through the process of gameplay and design, students practice all the rich skills that result from teamwork, including collaborative learning, leadership, and communication.

Continue reading “Teens Explore Science and Health through Game Design”