Sharing ‘Behind the Scene’ Stories About Scientific Discoveries

If a picture is worth a thousand words, what’s a video worth? For cell biologist Ron Vale, it’s priceless.

Screen shot from the video
In this iBiology Exit icon “discovery talk,” Ron Vale describes the twists and turns that led him to unexpected findings, including a motor protein involved in important cellular processes.

In 2006, Vale started a video-based science outreach project called iBiology Exit icon to give people around the world broader access to research seminars. The free online videos, which cover a range of biomedical fields and career-related topics, take viewers behind the scenes of scientific findings and convey the excitement of the discovery process.

While geared mostly for undergraduate students, graduate students and postdoctoral researchers, the videos are also a rich resource for anyone who wants a better understanding of many biomedical areas, including those we cover on this blog. Continue reading “Sharing ‘Behind the Scene’ Stories About Scientific Discoveries”

Field Focus: Making Chemistry Greener

Bob Lees
NIGMS’ Bob Lees answers questions about green chemistry. Credit: National Institute of General Medical Sciences.

Chemists funded by NIGMS are working to develop “greener” processes for discovering, developing and manufacturing medicines and other molecules with therapeutic potential, as well as compounds used in biomedical research. One of our scientific experts, organic chemist Bob Lees, recently spoke to me about some of these efforts.

What is green chemistry?

Green chemistry is the design of chemical processes and products that are more environmentally friendly. Among the 12 guiding principles of green chemistry Exit icon are producing less waste, including fewer toxic byproducts; using more sustainable (renewable) or biodegradable materials; and saving energy. Continue reading “Field Focus: Making Chemistry Greener”

Untangling a Trending Topic

Jean Chin
NIGMS’ Jean Chin answers questions about a new device for untangling proteins. Credit: National Institute of General Medical Sciences.

It’s not every day that we log into Facebook and Twitter to see conversations about denaturing proteins and the possibility of reducing biotechnology costs, but that changed last week when a story about “unboiling” eggs became a trending topic.

Since NIGMS partially funded the research advance Exit icon that led to the media scramble, we asked our scientific expert Jean Chin to tell us more about it.

What’s the advance?

Gregory Weiss of the University of California, Irvine, and his collaborators have designed a device that basically unties proteins that have been tangled together. Continue reading “Untangling a Trending Topic”

Asking Our Expert About Modeling Ebola

Irene Eckstrand
NIGMS’ Irene Eckstrand answers questions about modeling Ebola. Credit: National Institute of General Medical Sciences.

Ebola is the focus of many NIH-supported research efforts, from analyzing the genetics of virus samples to evaluating the safety and effectiveness of treatments and vaccines. Researchers involved in our Models of Infectious Disease Agent Study, or MIDAS, have been using computational methods to forecast the potential course of the outbreak and the impact of various intervention strategies.

Wondering how their work is going, I recently asked our modeling expert Irene Eckstrand a few questions.

How useful are the forecasts?

Forecasts give us a range of possible outcomes. In addition to being a useful public health tool to prepare for an outbreak, they’re an important research tool to test assumptions about how a disease may spread. When we compare the predicted and actual outcomes, we can confirm assumptions, such as the groups of individuals who are more likely to spread the infection to others. Continually doing this helps refine the models and ensure that their forecasts are as accurate as possible.

What are some of the challenges the modelers face?

Ebola virus
Ebola virus particles (green) attached to and budding from a cell (blue). Credit: National Institute of Allergy and Infectious Diseases.

We need data to build and test models. The data available from this outbreak have been more limited than in most previous outbreaks of Ebola simply because the public health systems are overwhelmed with sick people, and recording information is a secondary priority.

Another issue with forecasting future trends is incorporating information about the deployment of resources and the implementation of interventions that actually slowed the outbreak. We also need to incorporate changes in people’s behavior. If people think an outbreak is leveling off, they may relax the precautions they’ve been taking—and that could lead to another spike in the disease.

What other Ebola-related projects are the MIDAS modelers working on?

The MIDAS researchers are:

  • Modeling logistical factors such as the number and placement of treatment beds and staffing needs.
  • Tracking potential transmission within and between communities and at hospitals and funerals.
  • Developing a method to estimate the amount of underreporting of case data.
  • Applying models of “tipping points” to look for evidence that the disease curve is slowing.
  • Estimating the number of people who are infected but not symptomatic.
  • Creating new resources for Ebola modelers, including standards for using infectious disease data.
  • Calculating the risk of importation of cases for a wide variety of countries based on travel networks.

How are the modelers working together?

The MIDAS modelers conference call 1-2 times a week to discuss results, modeling strategies, data sources and questions amenable to modeling. They also participate in discussions with government and other academic groups, so there’s a sizable number of modelers working on a wide variety of public health, logistical and basic research questions.

If you’re interested in learning more about Ebola, Irene recommends a video overview of the 2014 outbreak from Penn State University Exit icon and a slide presentation on the myths and realities of the disease from Nigeria’s Kaduna State University Exit icon.

What Students Want to Know About Cells

Cell Day 2014

During a live online chat dubbed “Cell Day,” scientists at NIGMS recently fielded questions about the cell and careers in research from middle and high school students across the country. Here’s a sampling of the questions and answers, some of which have been edited for clarity or length.

What color are cells?
While cells with lots of iron, like red blood cells, may be red, usually cells are colorless.

How many different types of cells can be found inside the human body?
There are about 200 cell types and a few trillion total cells in the human body. That does not include bacteria, fungi and mites that live on the body.

Is it possible to have too many or not enough cells?
The answer depends on cell type. For example, within the immune system, there are many examples of diseases that are caused by too many or not enough cells. When too many immune cells accumulate, patients get very large spleens and lymph nodes. When too few immune cells develop, patients have difficulty fighting infections.

How fast does it take for a cell to produce two daughter cells?
Some cells, for example bacterial ones, can produce daughter cells very fast when nutrients are available. The doubling time for E. coli bacteria is 20 minutes. Other cells in the human body take hours or days or even years to divide.

Do skin cells stretch or multiply when you gain weight?
The size of cells is tightly regulated and maintained so they do not stretch much. As the surface area of the body increases with weight gain, the number of skin cells increases.

Why do cells self-destruct?
The term for cellular self-destruction is “apoptosis” or “programmed cell death.” Apoptosis is very important for normal development of humans and other animals as it ensures that we do not have too many cells and that “unhealthy” cells can be eliminated without causing harm to the surrounding cells. For instance, did you know that human embryos have webbing between their fingers and toes (just like ducks!)? Apoptosis eliminates the cells that form the web so that you are born with toes and fingers.

In what field is there a need for new scientists?
I would say that there is a need for scientists who can work at the interface between the biological and biomedical sciences and the data sciences. Knowing sophisticated mathematics and having computer skills to address questions like ‘what does this biomedical data tell us about particular diseases’ is still a challenge.

What is a scientist’s daily work day like? Is all of your time spent in a lab testing or like in an office throwing ideas around?
There are lots of different kinds of jobs a scientist can have. Many work in labs where they get to do experiments AND throw ideas around. Working in a lab is a lot of fun—you learn things about the world that no one has known before (how cool is that?). Other important jobs that scientists can do include writing about science as a journalist, helping other scientists patent new technologies they invent as a patent agent or lawyer, or working on important scientific policy issues for the government or other organizations.

Read more questions and answers