Tag: Genes

Quiz: Gauge Your Genetics Knowledge

0 comments
This post is part of a miniseries on genetics. Be sure to check out the other posts in this series that you may have missed.
Green circles and orange lines representing a DNA double helix with a magnifying glass zooming in on one section.
Credit: NIGMS.

In our miniseries on genetics, we’ve introduced the genome and how variants in DNA affect us. We’ve also discussed how people inherit genetic information and the way genes are expressed, as well as common tools researchers use to study DNA. We hope you’ve paid close attention because it’s time to test your knowledge of genetics! Take our quiz below, and let us know how many questions you answered correctly.

Continue reading “Quiz: Gauge Your Genetics Knowledge”

How Do Scientists Study Genes?

0 comments
This post is part of a miniseries on genetics. Be sure to check out the other posts in this series that you may have missed.
A DNA segment shown as a twisted ladder where each rung is half one color and half another.
DNA carries information needed for all cellular functions. Credit: NIGMS.

You may wonder how scientists study something as tiny as DNA. Over the past decades, researchers have developed a wide range of tools and techniques to help them unlock the secrets of human genomes and those of other organisms. Two key examples are DNA sequencing and gene editing.

DNA Sequencing

DNA sequencing, sometimes called gene or genome sequencing, enables researchers to “read” the order of the bases in a segment of DNA, which contains the information a cell needs to make important molecules like proteins, the functional building blocks of the cell. There are several methods for sequencing, but they all require many copies of the same DNA segment to get accurate results. Fortunately, scientists have developed a technique called polymerase chain reaction, often referred to as PCR, that can quickly and inexpensively create a large number of copies of a DNA segment.

Continue reading “How Do Scientists Study Genes?”

How Are Physical Features and Health Conditions Inherited?

0 comments
This post is part of a miniseries on genetics. Be sure to check out the other posts in this series that you may have missed.

Have you ever been told that you have your mother’s eyes? Or maybe you’ve found that you and your father share a condition such as asthma? People who are biologically related often have similarities in appearance and health because they have some of the same genetic variants. However, you’ve likely noticed that siblings with the same biological parents can differ significantly. Each person’s genome is a combination of DNA from both of their parents, but siblings’ DNA can differ because of the mixing and matching involved in creating reproductive cells.

Continue reading “How Are Physical Features and Health Conditions Inherited?”

What Is Genetics?

0 comments
This post is the first in our miniseries on genetics. Be sure to check out the other posts in this series.

Genetics is the study of genes and heredity—how traits are passed from parents to children through DNA. A gene is a segment of DNA that contains instructions for building one or more molecules that help the body work. Researchers estimate that humans have about 20,000 genes, which account for about 1 percent of our DNA. The remainder of the DNA plays a role in regulating genes, and scientists are researching other potential functions.

Continue reading “What Is Genetics?”

How Errors in Divvying Up Chromosomes Lead to Defects in Cells

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

Mitosis is fundamental among all organisms for reproduction, growth, and cell replacement. When a cell divides, it’s vital that the two new daughter cells maintain the same genes as the parent.

In one step of mitosis, chromosomes are segregated into two groups, which will go into the two new daughter cells. But if the chromosomes don’t divide properly, one daughter cell may have too many and the other too few. Having the wrong number of chromosomes, a condition called aneuploidy, can trigger cells to grow out of control.

Illustration of two sets of chromosomes being pulled apart. One pair separates evenly and is labeled normal, but the other doesn’t and is labeled aneuploidy.An illustration of chromosomes being segregated equally and unequally during mitosis. Credit: Deluca Lab, Colorado State University.

How chromosome segregation errors disrupt cell division is an important area of research. Although it’s been studied for decades, new aspects are still being uncovered and much remains unknown. NIGMS-funded scientists are studying different aspects of mitosis and chromosome segregation. Understanding the details can provide vital insight into an essential biological process and may also be the key to developing better drugs for cancer and other diseases.

Continue reading “How Errors in Divvying Up Chromosomes Lead to Defects in Cells”