How Errors in Divvying Up Chromosomes Lead to Defects in Cells

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

Mitosis is fundamental among all organisms for reproduction, growth, and cell replacement. When a cell divides, it’s vital that the two new daughter cells maintain the same genes as the parent.

In one step of mitosis, chromosomes are segregated into two groups, which will go into the two new daughter cells. But if the chromosomes don’t divide properly, one daughter cell may have too many and the other too few. Having the wrong number of chromosomes, a condition called aneuploidy, can trigger cells to grow out of control.

Illustration of two sets of chromosomes being pulled apart. One pair separates evenly and is labeled normal, but the other doesn’t and is labeled aneuploidy.An illustration of chromosomes being segregated equally and unequally during mitosis. Credit: Deluca Lab, Colorado State University.

How chromosome segregation errors disrupt cell division is an important area of research. Although it’s been studied for decades, new aspects are still being uncovered and much remains unknown. NIGMS-funded scientists are studying different aspects of mitosis and chromosome segregation. Understanding the details can provide vital insight into an essential biological process and may also be the key to developing better drugs for cancer and other diseases.

Continue reading “How Errors in Divvying Up Chromosomes Lead to Defects in Cells”

Explore Our Virtual Learning STEM Resources

0 comments

If you’re looking for engaging ways to teach science from home, NIGMS offers a range of resources that can help.

Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. A SEPA-funded resource about microbes. Credit: University of Nebraska, Lincoln.

Our Science Education and Partnership Award (SEPA) webpage features free, easy-to-access STEM and informal science education projects for pre-K through grade 12. Aligned with state and national standards for STEM teaching and learning, the program has tools such as:

  • Apps
  • Interactives
  • Online books
  • Curricula and lesson plans
  • Short movies

Students can learn about sleep, cells, growth, microbes, a healthy lifestyle, genetics, and many other subjects.

Continue reading “Explore Our Virtual Learning STEM Resources”

PECASE Honoree James Olzmann Investigates the Secrets of Lipid Droplets

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

A large, blue oval surrounded by much smaller yellow circles. A cell nucleus (blue) surrounded by lipid droplets (yellow). Credit: James Olzmann.

Within our cells, lipids are often stored in droplets, membrane-bound packages of lipids produced by the endoplasmic reticulum. For many years, scientists thought lipid droplets were simple globs of fat and rarely studied them. But over the past few decades, research has revealed that they’re full-fledged organelles, or specialized structures that perform important cellular functions. The field of lipid droplet research has been growing ever since.

Continue reading “PECASE Honoree James Olzmann Investigates the Secrets of Lipid Droplets”

Revealing a Piece of Cilia’s Puzzle

1 comment
A multicolored tube made up of small dots with three sets of appendages attached along its length. A partial model of a doublet microtubule. Credit: Veronica Falconieri.

Cilia (cilium in singular) are complex organelles found on all of our cells except red blood cells. Their rhythmic beating moves fluid or materials over the cell to help transport food and oxygen or remove debris. For example, cilia in our windpipe prevent bacteria and mucous from traveling to the lungs. Some pick up signals like antennae, such as cilia in our ears that help detect sounds. One component of cilia is the doublet microtubule, a major part of cilia’s skeleton that gives it strength and rigidity.

Continue reading “Revealing a Piece of Cilia’s Puzzle”

Pathways: The Circadian Rhythms Issue

0 comments
Cover of Pathways student magazine showing a microscopy image of a fruit fly’s head with bright blue eyes and the featured questions: What is this? And what does it have to do with how you sleep? Cover of Pathways student magazine.

NIGMS and Scholastic, Inc., bring you the third edition of Pathways, a collection of free resources that teaches students about basic science and its importance to health, and exciting research careers.

Pathways is designed for grades 6 through 12. The topic of this unit is circadian rhythms, the “schedules” our bodies follow over the course of a day. These rhythms influence processes like hunger and the sleep-wake cycle.

Continue readingPathways: The Circadian Rhythms Issue”

PECASE Honoree Sohini Ramachandran Studies the Genetic Foundations of Traits in Diverse Populations

0 comments
Headshot of Sohini Ramachandran. Sohini Ramachandran, Brown University.
Credit: Danish Saroee/Swedish Collegium for Advanced Study.

Recent advances in computing enable researchers to explore the life sciences in ways that would have been impossible a few decades ago. One new tool is the ability to sequence genomes, revealing people’s full DNA blueprints. The collection of more and more genetic data allows researchers to compare the DNA of many people and observe variations, including those shared by people with a common ancestry.

Sohini Ramachandran Link to external web site, Ph.D., is director of the Center for Computational Molecular Biology and associate professor of biology and computer science at Brown University in Providence, Rhode Island. She is also a recent recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE). Dr. Ramachandran researches the causes and consequences of human genetic variations using computer models. Starting with genomic data from living people, her lab applies statistical methods, mathematical modeling, and computer simulations to discover how human populations moved and changed genetically over time.

Continue reading “PECASE Honoree Sohini Ramachandran Studies the Genetic Foundations of Traits in Diverse Populations”

Sepsis: Using Big Data to Cut a Killer Down to Size

0 comments
A geographical outline of the U.S. with the text More than 1.7 million people get sepsis each year in the United States. View the full infographic for more facts about sepsis.

Sepsis is a serious medical condition caused by an overwhelming response to infection that damages tissues and organs. It’s unpredictable, progresses quickly, can strike anyone, and is a leading cause of hospital-related deaths. In the U.S. alone, nearly 270,000 people die each year from sepsis. Those who survive sepsis often end up in the hospital again, and some have long-term health complications. Early treatment is key for many patients to survive sepsis, yet doctors can’t easily diagnose it because it’s so complex and each patient is different.

Despite decades of research, sepsis remains a poorly understood condition with limited diagnostic tools and treatment. To tackle these obstacles, scientists Vincent Liu, Christopher Seymour, and Hallie Prescott have started using a “big data” approach, which relies on complex computer programs to sift through huge amounts of information. In this case, the computers analyze data such as demographic information, vital signs, and routine blood tests in the electronic health records of sepsis patients. The goal is to find patterns in the data that might help doctors understand, predict, and treat sepsis more effectively.

Continue reading “Sepsis: Using Big Data to Cut a Killer Down to Size”

The Chemistry of Chocolate

3 comments

Chocolate is a Valentine’s Day must-have and popular among people with a sweet tooth. Many also claim it lifts mood or even acts as an aphrodisiac, and we’ve all heard someone say it’s habit forming.

The compounds in chocolate that allegedly have positive effects come from the cacao bean, so the darker the chocolate, the more of these compounds it contains. Milk chocolate has less than dark chocolate, and white chocolate has nearly none because it includes no cocoa solids, only cocoa butter.

An infographic showing dark chocolate paired with the chemical structures of theobromine and phenethylamine, milk chocolate paired with vanillin and butyric acid, and white chocolate paired with stearic acid and palmitic acid. Chocolate contains upwards of 800 chemical compounds, just a handful of which are explored in this infographic. See more chemistry infographics like this one in C&EN’s Periodic Graphics collection Link to external web site. Click to enlarge

Does science back up the common claims about chocolate? To find the answers, we’re taking a look at the chemistry behind this treat.

Continue reading “The Chemistry of Chocolate”

Crowdsourcing Science: Using Competition to Drive Creativity

0 comments
Six student researchers sitting around a table and collaborating on a project. Credit: iStock.

Historically, crowdsourcing has played an important role in certain fields of scientific research. Wildlife biologists often rely on members of the public to monitor animal populations. Using backyard telescopes, amateur astronomers provide images and measurements that lead to important discoveries about the universe. And many meteorologists use data collected by citizen scientists to study weather conditions and patterns.

Now, thanks largely to advances in computing, researchers in computational biology and data science are harnessing the power of the masses and making discoveries that provide valuable insights into human health.

Continue reading “Crowdsourcing Science: Using Competition to Drive Creativity”