Cryo-Electron Microscopy Reveals Molecules in Ever Greater Detail

The molecular visualization technique known as cryo-electron microscopy (cryo-EM) was recently named the “2015 Method of the Year” by the journal Nature Methods. In a recent blog post, NIH Director Francis Collins explains how the technology works and just how rapidly it has advanced. He writes, “Today’s cryo-EM is so powerful that researchers can almost make out individual atoms!” He also notes, “These dramatic advances serve as a reminder of the ways in which basic technological innovation can open new realms of scientific possibility.”

We fund many scientists who are developing and applying cryo-EM to bring the details of biological structures into unprecedented focus. Here are two examples of their work and its potential impact. Continue reading

Meet a Globe-Trotting Chemist and Builder of “Smart Molecules”

Janarthanan Jayawickramarajah
Jayawickramarajah taking a “selfie” with “The Bean,”
a large, highly reflective sculpture in Chicago
Credit: Janarthanan Jayawickramarajah
Janarthanan Jayawickramarajah
Born in: Kandy, Sri Lanka
Job site: Tulane University, New Orleans, Louisiana
Alternate career choice: Anthropologist
Favorite sports teams: Sri Lanka national cricket team, University of North Carolina at Chapel Hill Tar Heels basketball, New Orleans Saints football
Favorite weekend activity: Strolling through parks with his wife and two kids and stopping for coffee and beignets (a New Orleans treat, a lot like a doughnut covered in powdered sugar)

In a way, Janarthanan Jayawickramarajah is like an architect. But rather than sketching plans for homes or buildings, he creates molecules designed to detect and destroy cancer cells. Continue reading

Cool Images: A Holiday-Themed Collection

Here are some images from our gallery that remind us of the winter holidays—and showcase important findings and innovations in biomedical research.

Ribbons and Wreaths
This wreath represents the molecular structure of a protein, Cas4, which is part of a system, known as CRISPR, that bacteria use to protect themselves against viral invaders. The green ribbons show the protein’s structure, and the red balls show the location of iron and sulfur molecules important for the protein’s function. Scientists have harnessed Cas9, a different protein in the bacterial CRISPR system, to create a gene-editing tool known as CRISPR-Cas9. Using this tool, researchers can study a range of cellular processes and human diseases more easily, cheaply and precisely. Last week, Science magazine recognized the CRISPR-Cas9 gene-editing tool as the “breakthrough of the year.”

Continue reading

Recognition for CRISPR Gene-Editing Tool

The CRISPR gene-editing tool was recognized today by Science magazine as its “breakthrough of the year.” We support a number of researchers working in this exciting area and have featured it on this blog. To learn more about this exceptionally promising new method, see below for our illustrated explanation of the CRISPR system and its possible applications.

How the CRISPR System Works

Illustration of CRISPR system

The CRISPR system has two components joined together: a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence) and a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA).

Continue reading

Sugar Rush in Research

Cookies
Sugar sprinkled on cookies and other treats is often an attractive—and sweet tasting—finishing touch. But the sugar-rich coating that surrounds most cells is far more—it’s a vital ingredient for many basic cellular processes. Credit: Stock image.

Simple sugars such as sucrose (found in the sugar bowl) and fructose (in fruits and honey) provide the sweet finishing touches on many holiday treats. But did you know that versions of these molecules also serve important functions in our cells?

Cells assemble sugar molecules into chains known as glycans. These glycans, which can be linear or branching, play an astounding number of biological roles. When bound to proteins called lectins, they enable a fertilized egg to attach properly onto a woman’s uterine wall and help immune cells move out of a blood vessel to the site of an infection. When decorated with specific patterns of molecules called sulfates, glycans can help direct the growth of nerves. And it’s the glycans found on our blood cells that define blood type (A, B, AB or O). Continue reading

Bacterial Biofilms: A Charged Environment

Bacillus subtilis biofilm
A Bacillus subtilis biofilm grown in a Petri dish. Credit: Süel Lab, UCSD.

Last summer, we shared findings from Gürol Süel Exit icon and colleagues at the University of California, San Diego, that bacterial cells in tight-knit microbial communities called biofilms expand in a stop-and-go pattern. The researchers concluded that this pattern helps make food at the nutrient-rich margin available to the cells in the starved center, but they didn’t know how. They’ve now shown that the cells use electrochemical signaling to communicate and cooperate with each other.

Because nutrients and other signals cells use to sense each other and their environment move rather slowly, the researchers looked for a faster, more active communication system in biofilms of the bacterium B. subtilis. They focused on electrical signaling via potassium, a positively charged ion that, for example, our nerve and muscle cells use to send or receive signals. Continue reading

Cracking a Ubiquitous Code

We asked the heads of our scientific divisions to tell us about some of the big questions in fundamental biomedical science that researchers are investigating with NIGMS support. This article is the third in an occasional series that explores these questions and explains how pursuing the answers could advance understanding of important biological processes.

Ubiquitin (Ub) molecules
Ubiquitin (Ub) molecules attached to proteins can form possibly hundreds of different shapes. Credit: NIGMS.

Researchers are on a quest to crack a code made by ubiquitin, a small protein that plays a big role in coordinating cellular function. By attaching to other proteins, ubiquitin determines what those proteins should do next.

Just as zip codes direct letters to specific towns, the ubiquitin code might direct one protein to help with DNA repair, another to assist in cell division, and a third to transport molecules into and out of cells. Continue reading

Seeing Telomerase’s ‘Whiskers’ and ‘Toes’

Telomerase and its components.

The image here is the “front view” of telomerase, with the enzyme’s components shown in greater detail than ever before. Credit: UCLA Department of Chemistry and Biochemistry.

Like the features of a cat in a dark alley, those of an important enzyme called telomerase have been elusive. Using a combination of imaging techniques, a research team led by Juli Feigon Exit icon of the University of California, Los Angeles, has now captured the clearest view ever of the enzyme.

Telomerase maintains the DNA at the ends of our chromosomes, known as telomeres, which act like the plastic tips on the ends of shoelaces. In the absence of telomerase activity, telomeres get shorter each time our cells divide. Eventually, the telomeres become so short that the cells stop dividing or die. On the other hand, cells with abnormally high levels of telomerase activity can constantly rebuild their protective chromosomal caps. Telomerase is particularly active within cancer cells. Continue reading

Cool Image: Tracing Proteins in Action

Bright amorphous loops

These bright, amorphous loops represent a never-before-seen glimpse at how proteins that play a key role in cell duplication are themselves duplicated. Credit: Sue Jaspersen, Zulin Yu and Jay Unruh, Stowers Institute for Medical Research.

Looking like necklaces stacked on a dresser, these bright, amorphous loops show the outlines of yeast proteins that make up the spindle pole, a cellular component found in organisms as diverse as yeast and humans. Each cell starts with a single spindle pole, which must somehow duplicate to form the pair that works together to pull matching chromosomes apart during cell division. Scientists don’t completely understand how this duplication occurs, but they do know that errors in spindle pole copying can lead to a number of health conditions, including cancer. Continue reading

Sharing ‘Behind the Scene’ Stories About Scientific Discoveries

If a picture is worth a thousand words, what’s a video worth? For cell biologist Ron Vale, it’s priceless.

Screen shot from the video
In this iBiology Exit icon “discovery talk,” Ron Vale describes the twists and turns that led him to unexpected findings, including a motor protein involved in important cellular processes.

In 2006, Vale started a video-based science outreach project called iBiology Exit icon to give people around the world broader access to research seminars. The free online videos, which cover a range of biomedical fields and career-related topics, take viewers behind the scenes of scientific findings and convey the excitement of the discovery process.

While geared mostly for undergraduate students, graduate students and postdoctoral researchers, the videos are also a rich resource for anyone who wants a better understanding of many biomedical areas, including those we cover on this blog. Continue reading