Pathways: The Regeneration Issue

Cover of Pathways student magazine showing many zebrafish swimming underwater around grasslike plants, with the featured question: What do you and these zebrafish have in common? Cover of Pathways student magazine.

NIGMS and Scholastic, Inc., are excited to bring you the next edition of Pathways, a collection of free resources that teaches students about basic science, its importance to human health, and exciting research careers.

Pathways is designed for grades 6 through 12. The topic of this unit is regenerative medicine, a field that focuses on restoring or healing damaged body parts so that they function normally. The long-term goal is to stimulate tissue and organs to heal themselves.

Continue readingPathways: The Regeneration Issue”

Cool Images: A Colorful—and Halloween-Inspired—Collection

Transformations aren’t just for people or pets around Halloween. Scientific images also can look different than you might expect, depending on how they’re photographed. Check out these tricky-looking images and learn more about the science behind them.

A human fibroblast cell dividing. A tan-colored area surrounds the cell that contains two magenta-colored centers. Green dots line the area where the cell is dividing. Credit: Nilay Taneja, Vanderbilt University, and Dylan T. Burnette, Ph.D., Vanderbilt University School of Medicine.

Do you have a hunch about what this image is? Perhaps something to do with dry leaves? It’s a human fibroblast cell undergoing cell division, or cytokinesis, into two daughter cells. Cytokinesis is essential for the growth and development of new cells. And fibroblasts play a big role in wound healing by helping with contraction and closure.

Continue reading “Cool Images: A Colorful—and Halloween-Inspired—Collection”

On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers

A college degree was far from the minds of Joshua and Caleb Marceau growing up on a small farm on the Flathead Indian Reservation in rural northwestern Montana. Their world centered on powwows, tending cattle and chicken, fishing in streams, and working the 20-acre ranch their parents own. Despite their innate love of learning and science, the idea of applying to and paying for college seemed out of reach. Then, opportunities provided through NIGMS, mentors, and scholarships led them from a local tribal college to advanced degrees in biomedical science. Today, both Joshua and Caleb are Ph.D.-level scientists working to improve public health through the study of viruses.

Joshua Discovers Unexpected Opportunities

Joshua Marceau examining a specimen in front of a large centrifuge.Joshua Marceau at Salish Kootenai College, where he gained research experience as an undergraduate. Credit: Joshua Marceau.

As the oldest of four brothers, Joshua was the trailblazer in the family. But like most trailblazers, his path to a scientific career wasn’t always smooth. He attended a reservation school until sixth grade, then was homeschooled. He earned his GED through the local tribal community college, Salish Kootenai College (SKC) in Pablo, so he could begin to take college-level chemistry.

Continue reading “On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers”

Interview With a Scientist: Unlocking the Secrets of Animal Regeneration With Alejandro Sánchez Alvarado

Most of what we know comes from intensive study of research organisms—mice, fruit flies, worms, zebrafish, and a few others. But according to Alejandro Sánchez Alvarado Link to external web site, a researcher at the Stowers Institute for Medical Research in Kansas City and a Howard Hughes Medical Institute Investigator, these research organisms represent only a tiny fraction of all animal species on the planet. Under-studied organisms could reveal important biological phenomena that simply don’t occur in the handful of models typically studied, he says.

Continue reading “Interview With a Scientist: Unlocking the Secrets of Animal Regeneration With Alejandro Sánchez Alvarado”

Back to School: Top Tips for Undergraduates Eyeing Careers in Biomedical Sciences

Finding a career path in biomedical research can be challenging for many young people, especially when they have no footsteps to follow. We asked three recent college graduates who are pursuing advanced degrees in biomedical sciences to give us their best advice for undergrads.

Tip 1: Talk with mentors and peers, and explore opportunities.

One of the most challenging things for incoming undergraduates is simply to find out about biomedical research opportunities. By talking to professors and peers, students can find ways to explore and develop their interests in biomedical research.

Mariajose Franco in a lab, using a pipette to fill a glass vial.Credit: Mariajose Franco.

Mariajose Franco, a first-generation college student, recently graduated with honors and dual degrees in molecular and cellular biology and physiology from the University of Arizona in Tucson. She’s now in a postbaccalaureate program at the National Cancer Institute and has her eye on combined M.D.-Ph.D. programs.

As an undergraduate, a course in cancer biology piqued her interest, and she reached out to her professor, Justina McEvoy, to see if she could join her lab. As a sophomore, Franco began working on rhabdomyosarcoma, a rare childhood cancer that arises from cells that normally develop into skeletal muscle. Through the NIGMS Maximizing Access to Research Careers (MARC) program, she received support to conduct two research projects during her junior and senior years. In addition to offering research opportunities, the MARC program was instrumental in providing training in scientific writing and conference poster presentations, and navigating applications, Franco says.

Continue reading “Back to School: Top Tips for Undergraduates Eyeing Careers in Biomedical Sciences”

Get Kids Excited About Science: Free STEM Resources

Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. Credit: University of Nebraska, Lincoln.

We have a new Science Education and Partnership Award (SEPA) webpage, featuring free, easy-to-access, SEPA-funded Link to external web site resources that educators nationwide can use to engage their students in science. The SEPA program supports innovative STEM Link to external web site and informal science education Link to external web site  projects for pre-kindergarten through grade 12. The program includes tools that teachers, scientists, and parents can use to excite kids about science and research, such as:

Continue reading “Get Kids Excited About Science: Free STEM Resources”

Advances in 3D Printing of Replacement Tissue

A bioprint of the small air sac in the lungs with red blood cells moving through a vessel network supplying oxygen to living cells. Credit: Rice University. A bioprint of the small air sac in the lungs with red blood cells moving through a vessel network supplying oxygen to living cells. Credit: Rice University.

A team of bioengineers, funded in part by NIGMS, has devised a way to use 3D bioprinting technology to construct the small air sacs in the lungs and intricate blood vessels. Continue reading “Advances in 3D Printing of Replacement Tissue”

RNA Polymerase: A Target for New Antibiotic Drugs?

DNA, with its double-helix shape, is the stuff of genes. But genes themselves are only “recipes” for protein molecules, which are molecules that do the real heavy lifting (or do much of the work) inside cells.

RNAP illustrated as a crab claw, clamping on a DNA double helix. Artist interpretation of RNAP grasping and unwinding a DNA double helix. Credit: Wei Lin and Richard H. Ebright.

Here’s how it works. A molecular machine called RNA polymerase (RNAP) travels along DNA to find a place where a gene begins. RNAP uses a crab-claw-like structure to grasp and unwind the DNA double helix at that spot. RNAP then copies (“transcribes”) the gene into messenger RNA (mRNA), a molecule similar to DNA.

The mRNA molecule travels to one of the cell’s many protein-making factories (ribosomes), which use the mRNA message as instructions for making a specific protein.

Continue reading “RNA Polymerase: A Target for New Antibiotic Drugs?”

A Scientist’s Exploration of Regeneration

Viravuth (“Voot”) Yin, standing with arms crossed and smiling in front of a shelves holding tanks of zebrafish in his lab. Viravuth (“Voot”) Yin, associate professor of regenerative biology and medicine at MDI Biological Laboratory and chief scientific officer at Novo Biosciences, Inc., in Bar Harbor, Maine. Credit: MDI Biological Laboratory.

In 1980, a week after his 6th birthday, Viravuth (“Voot”) Yin immigrated with his mother, grandfather, and three siblings from Cambodia to the United States. Everything they owned fit into a single, 18-inch carry-on bag. They had to build new lives from almost nothing. So, it’s perhaps fitting that Yin studies regeneration, the fascinating ability of some animals, such as salamanders, sea stars, and zebrafish, to regrow damaged body parts, essentially from scratch.

Yin’s path wasn’t always smooth. His family settled in Hartford, Connecticut, near an uncle who had been granted asylum during the Vietnam War. Yin got into a lot of trouble in school, trying to learn a new culture and fit in. Things improved when his mother moved him and his siblings to West Hartford, well known for its strong schools.

Continue reading “A Scientist’s Exploration of Regeneration”

Cilia: Tiny Cell Structures With Mighty Functions

Black-and-white video of cilia lining a cell wall and waving back and forth. Credit: Zvonimir Dogic, Brandeis University.

Imagine an army of tiny soldiers stationed throughout your body, lining cells from your brain to every major organ system. Rather than standing at attention, this tiny force sweeps back and forth thousands of times a minute. Their synchronized action helps move debris along the ranks to the nearest opening. Other soldiers stand as sentries, detecting changes in your environment, relaying that information to your brain, and boosting your senses of taste, smell, sight, and hearing.

Your brain may be the commander in chief, but these rank-and-file soldiers are made up of microscopic cell structures called cilia (cilium in singular).

Here we describe these tiny but mighty cell structures in action.

Continue reading “Cilia: Tiny Cell Structures With Mighty Functions”