Reusable Disinfectant Developed from Mussel “Glue”

0 comments
A pile of ocean mussels with shiny black shells.Mimicking mussels’ natural “glue” could have multiple benefits.

Many species have developed unique adaptations to help them thrive in their environments, and scientists in a field called biomimicry use these examples as the basis for tools to help humans. Biomimicry researchers have made a wide range of products, from climbing pads modeled after gecko feet to a faster, sharp-nosed bullet train based on the beak of the kingfisher bird. The animal kingdom also provides inspiration for biomedical products. For instance, scientists at Michigan Technological University in Houghton discovered that a natural “glue” produced by mussels has antimicrobial properties and are developing a way to put these properties to use.

Continue reading “Reusable Disinfectant Developed from Mussel “Glue””

Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke

0 comments

Whether animals are looking for food or mates, or avoiding pathogens and predators, they rely on biosensors—molecules that allow them to sense and respond to their environments. Christina Dawn Smolke, Ph.D. Link to external web site, a professor of bioengineering at Stanford University in California, focuses her research on creating new kinds of biosensors to receive, process, and transmit molecular information. Her lab has built RNA molecules, or switches, that can alter gene expression based on biochemical changes they detect.

Continue reading “Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke”

The Maternal Magic of Mitochondria

5 comments
An oblong purple shape with ripples throughout against a light blue background. Mitochondria (purple) in a rodent heart muscle cell. Credit: Thomas Deerinck, National Center for Microscopy and Imaging Research.

Mitochondria (mitochondrion in singular) are indispensable. Every cell of our bodies, apart from mature red blood cells, contains the capsule-shaped organelles that generate more than 90 percent of our energy, which is why they’re often called “the powerhouse of the cell.” They produce this energy by forming adenosine triphosphate (ATP), our cells’ most common energy source. But mitochondria also support cells in other ways. For example, they help cells maintain the correct concentration of calcium ions, which are involved in blood clotting and muscle contraction. Mitochondria are also the only structure in our cells with their own unique DNA, which with rare exceptions, is inherited only from mothers. That’s why, in honor of Mother’s Day, we’re exploring this special cellular connection to moms.

Continue reading “The Maternal Magic of Mitochondria”

The Science of Infectious Disease Modeling

1 comment

What Is Computer Modeling and How Does It Work?

Recent news headlines are awash in references to “modeling the spread” and “flattening the curve.” You may have wondered what exactly this means and how it applies to the COVID-19 pandemic. Infectious disease modeling is part of the larger field of computer modeling. This type of research uses computers to simulate and study the behavior of complex systems using mathematics, physics, and computer science. Each model contains many variables that characterize the system being studied. Simulation is done by adjusting each of the variables, alone or in combination, to see how the changes affect the outcomes. Computer modeling is used in a wide array of applications, from weather forecasting, airplane flight simulation, and drug development to infectious disease spread and containment.

Continue reading “The Science of Infectious Disease Modeling”

Cool Images: The Hidden Beauty Inside Plants

0 comments

Spring brings with it a wide array of beautiful flowers, but the interior structures of plants can be just as stunning. Using powerful microscopes, researchers can peek into the many molecular bits and pieces that make up plants. Check out these cool plant images from our Image and Video Gallery that NIGMS-funded scientists created while doing their research.

Several round structures that are yellow at the center and pink and purple around the edges and have honeycomb-like interiors. Credit: Arun Sampathkumar and Elliot Meyerowitz, California Institute of Technology.

In plants and animals, stem cells can transform into a variety of different cell types. The stem cells at the growing tip of this Arabidopsis plant will soon become flowers. Cellular and molecular biologists frequently study Arabidopsis because it grows rapidly (its entire life cycle is only 6 weeks), produces lots of seeds, and has a genome that’s easy to manipulate.

Continue reading “Cool Images: The Hidden Beauty Inside Plants”

All About Grants: Basics 101

2 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

A female scientist in a lab using a pipette. Scientific research requires many resources, which all require funding.
Credit: Michele Vaughan.

Scientific inspiration often strikes unexpectedly. The Greek mathematician and inventor Archimedes first thought of the principles of volume while taking a bath. Otto Loewi designed an important experiment on nerve cells based on a dream involving frog hearts.

But going from an initial moment of inspiration to a final answer can be a long and complex process. Scientific research requires many resources, including laboratory equipment, research organisms, and scientists’ time. And all of this requires funding. Government grants support the majority of research in the United States, and the main source of these grants for biomedical researchers is the National Institutes of Health (NIH). NIH is the primary federal agency for conducting and supporting basic, clinical, and translational medical research. It investigates the causes, treatments, and cures for both common and rare diseases.

Continue reading “All About Grants: Basics 101”

Twisting and Turning: Unraveling What Causes Asymmetry

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

Asymmetry in our bodies plays an important role in how they work, affecting everything from function of internal systems to the placement and shape of organs. Take a look at your hands. They are mirror images of each other, but they’re not identical. No matter how you rotate them or flip them around, they will never be the same. This is an example of chirality, which is a particular type of asymmetry. Something is chiral if it can’t overlap on its mirror image.

An image of a pair of hands, palms facing up. An arrow points to another image of the left hand on top of the right, both palms still facing up, illustrating that they can’t be superimposed. Our hands are chiral: They’re mirror images but aren’t identical.

Scientists are exploring the role of chirality and other types of asymmetry in early embryonic development. Understanding this relationship during normal development is important for figuring out how it sometimes goes wrong, leading to birth defects and other medical problems.

Continue reading “Twisting and Turning: Unraveling What Causes Asymmetry”

How Errors in Divvying Up Chromosomes Lead to Defects in Cells

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

Mitosis is fundamental among all organisms for reproduction, growth, and cell replacement. When a cell divides, it’s vital that the two new daughter cells maintain the same genes as the parent.

In one step of mitosis, chromosomes are segregated into two groups, which will go into the two new daughter cells. But if the chromosomes don’t divide properly, one daughter cell may have too many and the other too few. Having the wrong number of chromosomes, a condition called aneuploidy, can trigger cells to grow out of control.

Illustration of two sets of chromosomes being pulled apart. One pair separates evenly and is labeled normal, but the other doesn’t and is labeled aneuploidy.An illustration of chromosomes being segregated equally and unequally during mitosis. Credit: Deluca Lab, Colorado State University.

How chromosome segregation errors disrupt cell division is an important area of research. Although it’s been studied for decades, new aspects are still being uncovered and much remains unknown. NIGMS-funded scientists are studying different aspects of mitosis and chromosome segregation. Understanding the details can provide vital insight into an essential biological process and may also be the key to developing better drugs for cancer and other diseases.

Continue reading “How Errors in Divvying Up Chromosomes Lead to Defects in Cells”

Explore Our Virtual Learning STEM Resources

1 comment

If you’re looking for engaging ways to teach science from home, NIGMS offers a range of resources that can help.

Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. A SEPA-funded resource about microbes. Credit: University of Nebraska, Lincoln.

Our Science Education and Partnership Award (SEPA) webpage features free, easy-to-access STEM and informal science education projects for pre-K through grade 12. Aligned with state and national standards for STEM teaching and learning, the program has tools such as:

  • Apps
  • Interactives
  • Online books
  • Curricula and lesson plans
  • Short movies

Students can learn about sleep, cells, growth, microbes, a healthy lifestyle, genetics, and many other subjects.

Continue reading “Explore Our Virtual Learning STEM Resources”