Putting West Virginia Students on the Path to Scientific Careers

0 comments
Logos of the West Virginia HSTA and WV-INBRE programs. HSTA’s logo shows a colorful icon image of the human body’s muscular system, with a state icon of West Virginia off to the left. INBRE’s logo shows a double helix overtop a state icon of West Virginia.
Credit: NIGMS.

Two NIGMS-funded programs are teaming up to shape the future of science and technology in West Virginia (WV). One engages high school students in science, technology, engineering, math, and medicine (STEM+M); introduces them to research; and provides direct access to college through tuition waivers. In the other program, undergraduate students are paired with a researcher at their institution for a paid internship—an important step toward a career in science.

The Health Sciences & Technology Academy

“We liken our students to rosebuds. As they grow, you see them blossom into self-confident leaders,” says Catherine Morton, Ed.D., director of the Health Sciences & Technology Academy (HSTA) in West Virginia. This mentoring program is supported in part by an NIGMS Science Education Partnership Award (SEPA).

Continue reading “Putting West Virginia Students on the Path to Scientific Careers”

What Do Fats Do in the Body?

0 comments

It’s common knowledge that too much cholesterol and other fats can lead to disease and that a healthy diet involves watching how much fatty food we eat. However, our bodies need a certain amount of fat to function—and we can’t make it from scratch.

A colorful, flowerlike structure.
Hepatocytes, like the one shown here, are the most abundant type of cell in the human liver. One important role they play is producing bile, a liquid that aids in digesting fats. Credit: Donna Beer Stolz, University of Pittsburgh.

Triglycerides, cholesterol, and other essential fatty acids—the fats our bodies can’t make on their own—store energy, insulate us, and protect our vital organs. They act as messengers, helping proteins do their jobs. They also start chemical reactions that help control growth, immune function, reproduction, and other aspects of basic metabolism. Fats also help the body stockpile certain nutrients. Vitamins A, D, E, and K, for example, are stored in the liver and in fatty tissues.

The cycle of making, breaking, storing, and using fats is at the core of how all animals, including humans, regulate their energy. An imbalance in any step can result in disease. For instance, having too many triglycerides in our bloodstream raises our risk of clogged arteries, which can lead to heart attack and stroke.

Continue reading “What Do Fats Do in the Body?”

Research Organism Superheroes: Fruit Flies

0 comments
A fruit fly on a yellow fruit.
Credit: iStock.

Those pesky little bugs flying around the overripe bananas in your kitchen may hold the key to understanding something new about how our bodies work. That’s right, the fruit fly (Drosophila melanogaster) is a widely used research organism in genetics because of its superpower of reproducing quickly with similar genes to people.

Researchers have been studying fruit flies for over a century for many reasons. First, they’re easy to please—just keep them at room temperature and feed them corn meal, sugar, and yeast (or those bananas on your counter!). Second, they reproduce more quickly and have shorter life cycles than larger organisms. A female can lay up to a hundred eggs in a day, and those eggs develop into mature adult flies within 10 to 12 days. A third reason is the simplicity of the fruit fly’s genome, which only has four pairs of chromosomes compared to the 23 in humans. And on a logistical note, the male and female flies are easy to tell apart (genetic studies often require separating males and females, which isn’t an easy feat in all organisms).

Continue reading “Research Organism Superheroes: Fruit Flies”

RISE-ing Stars From Northern Arizona University

0 comments
Chantel wearing a traditional Native American dress and holding a graduation cap.
Chantel Tsosie at her college graduation, wearing her Tribe’s formal, traditional rug dress that her grandmother made. Credit: Courtesy of Chantel Tsosie.

“Science is for everyone. It’s in everything. It exists in cultures everywhere,” says Chantel Tsosie, a master’s student in the NIGMS-supported Research Initiative for Scientific Enhancement (RISE) program at Northern Arizona University (NAU) in Flagstaff. The program aims to prepare a diverse group of students for research careers through culturally relevant support, hands-on research experiences, and a tailored curriculum.

Chantel started her bachelor’s studies at NAU as a dental hygiene major and later changed her focus to biomedical sciences. “I’m from the Navajo Nation, and growing up on the reservation, I wasn’t really exposed to research as a career. At NAU, I began taking classes like microbiology and chemistry and found that I loved the lab portions of those. I met scientists who were Indigenous and really started looking up to them,” she says. When a faculty member brought RISE to her attention, she was immediately interested and reached out to its leaders, Catherine Propper, Ph.D., and Anita Antoninka, Ph.D.

Continue reading “RISE-ing Stars From Northern Arizona University”

How Can the Immune System Go Awry?

0 comments
This post is part of a miniseries on the immune system. Be sure to check out the other posts in this series that you may have missed.

The immune system is designed to closely monitor the body for signs of intruders that may cause infection. But what happens if it malfunctions? Overactive and underactive immune systems can both have negative effects on your health.

Continue reading “How Can the Immune System Go Awry?”

Inspiring the Next Generation of Scientists Through CityLab

0 comments
CityLab logo. The name CityLab written over an outline of a city inside an Erlenmeyer flask.
Credit: CityLab.

“Many of the students we work with don’t have access to a laboratory through their local schools. For them, CityLab is their first exposure to a laboratory environment—these are hugely important moments for these kids,” says Carl Franzblau, Ph.D., the founder of CityLab at Boston University (BU). CityLab was established more than 30 years ago as a science education outreach program for precollege students and teachers through a partnership between the Chobanian & Avedisian School of Medicine and the Wheelock College of Education & Human Development at BU.

“Since our first Science Education Partnership Award (SEPA) grant in 1991, our mission has been to inspire students to consider careers in the biomedical sciences and broaden the opportunities that are available to them,” says Carla Romney, D.Sc., the director of research for CityLab. Continuous SEPA funding since 1991 has allowed CityLab to fulfill its mission and provide students with state-of-the-art biotechnology laboratory facilities and curricula.

Continue reading “Inspiring the Next Generation of Scientists Through CityLab”

Ring In the New Year With Basic Research

0 comments

Empowering basic biomedical research, which focuses on understanding how living systems work, is one of NIGMS’ main goals. This type of research not only helps us learn how our bodies and those of other organisms function but also lays the foundation for advances in disease diagnosis, treatment, and prevention.

We’re excited to see what the upcoming year has in store for the field! In preparation, we’re highlighting what NIGMS-supported scientists had to say in 2023 about the many merits of basic research. Also check out the links to the Biomedical Beat posts that feature them if you haven’t already.

Continue reading “Ring In the New Year With Basic Research”

Seeking Success in Science Through NIH-Funded Training

0 comments
A headshot of Hasset Nurelegne.
Credit: Courtesy of Hasset Nurelegne.

“What’s great about a career in research is that there are so many paths you can take. I get so excited for the future when I think about all the open doors ahead of me,” says Hasset Nurelegne, a senior at Emory University in Atlanta, Georgia. Hasset is majoring in neuroscience and behavioral biology (NBB) as well as English.

Since her first year on campus, Hasset has been an active participant in an NIGMS-funded program at Emory that aims to develop a diverse pool of scientists, the Initiative for Maximizing Student Development (IMSD) (which is now just for graduate students; the Maximizing Access to Research Careers [MARC] program is now available for undergraduates). The Emory IMSD has provided Hasset and other trainees with financial assistance for year-round research experiences and a support system for professional development skills and responsible conduct of research.

Continue reading “Seeking Success in Science Through NIH-Funded Training”

Science Snippet: Zooming In on Nanoparticles

0 comments
A circle divided into six different, brightly colored slices, each with a different style of nanoparticle. In the center is a gray circle with the word nanoparticles.
Nanoparticles come in many different shapes and configurations. Credit: Adapted from Stevens, et. al., under Creative Commons License 4.0.

Nanoparticles may sound like gadgets from a science fiction movie, but they exist in real life. They’re particles of any material that are less than 100 nanometers (one-billionth of a meter) in all dimensions. Nanoparticles appear in nature, and humans have, mostly unknowingly, used them since ancient times. For example, hair dyeing in ancient Egypt involved lead sulfite nanoparticles, and artisans in the Middle Ages added gold and silver nanoparticles to stained-glass windows. Over the past several decades, researchers have studied nanoparticles for their potential uses in many fields, from computer engineering to biology.

A nanoparticle’s properties can differ significantly from those of larger pieces of the same material. Properties that may change include:

Continue reading “Science Snippet: Zooming In on Nanoparticles”

What Is the Immune System?

0 comments
This post is the first in our miniseries on the immune system. Be sure to check out the other posts in this series!
A sphere with evenly spaced blue projections and a pink core.
A computer-generated image of the rotavirus, a virus that commonly causes illness in children through inflammation of the stomach and intestines. Credit: Bridget Carragher, The Scripps Research Institute, La Jolla, California.

What do antibodies, mucus, and stomach acid have in common? They’re all parts of the immune system!

The immune system is a trained army of cells, tissues, and organs that work together to block, detect, and eliminate harmful insults to your body. It can protect you from invaders like bacteria, viruses, fungi, and parasites.

Innate and Adaptive

The immune system is often thought of as two separate platoons: the innate immune system and the adaptive immune system. Although these two platoons have different jobs and are made up of soldiers with different specialties, they work together to prevent infections.

Continue reading “What Is the Immune System?”