Author: Abbey Bigler

Headshot of Abbey Bigler

Abbey is a science writer who enjoys making important biological science and public health information accessible to everyone.

Posts by Abbey Bigler

A Tale of Tails: How Reptile Regeneration Could Help Humans

0 comments
A profile picture of Dr. Lozito wearing a white lab coat.
Dr. Thomas Lozito. Credit: Chris Shinn for USC Health Advancement Communications.

“I’ve always been interested in science and in lizards. I got my first pet lizard when I was around 4 years old, and it was love at first sight,” says Thomas Lozito, Ph.D., who now studies the creatures as an assistant professor of orthopaedic surgery, stem cell biology, and regenerative medicine at the University of Southern California (USC) in Los Angeles.

During his childhood, Dr. Lozito turned his parents’ house into a “little zoo” of lizards and amphibians. He sneaked lizards into his dorm room as a college student at Johns Hopkins University in Baltimore, Maryland, where he earned his bachelor’s degree in biomedical engineering. While pursuing his Ph.D. in stem cell biology through a joint program between the National Institutes of Health and Cambridge University in England, he bred lizards and frogs and sold them to earn extra money.

Continue reading “A Tale of Tails: How Reptile Regeneration Could Help Humans”

Five Outstanding Stories From 2022

0 comments

Throughout 2022, we shared the stories of dozens of NIGMS-supported researchers, trainees, and programs. We also highlighted new STEM education resources, tested your knowledge with quizzes, showcased extraordinary scientific images, and more. To celebrate the upcoming new year, we’re highlighting five of our most popular posts from 2022. Check out the list below, and let us know in the comments section which of this year’s posts you liked best!

Continue reading “Five Outstanding Stories From 2022”

Career Conversations: Q&A with Biomolecular Engineer Markita Landry

0 comments
A headshot of Dr. Landry.
Dr. Markita Landry. Credit: Vilcek Foundation.

“I have a hard time envisioning a career more exciting than science. It’s really magical to see an experimental result and, for a moment, be the only person in the universe to know something about the world,” says Markita Landry, Ph.D., an associate professor of chemical and biomolecular engineering at the University of California, Berkeley. In an interview, Dr. Landry shares with us her scientific journey, research with nanoparticles, and interests outside of the lab.

Q: What sparked your interest in science?

A: I was indirectly exposed to science growing up because my mom was in computer science, but I think moving to the United States is what made me very interested in it. My mother is Bolivian; my father is French-Canadian; and I grew up mostly in Quebec, Canada. When I was halfway through high school, we moved to the United States, and, for the first time, my classes were taught in English. I really gravitated to math and science because they made sense regardless of the language they were taught in.

Continue reading “Career Conversations: Q&A with Biomolecular Engineer Markita Landry”

The Chemistry Clicked: Two NIGMS-Funded Researchers Receive Nobel Prize

0 comments

Since its creation in 1962, NIGMS has supported the work of the recipients of 94 Nobel Prizes—44 in physiology or medicine and 50 in chemistry. NIGMS-funded investigators perform cutting-edge basic research that is foundational to understanding normal life processes and disease. Such important breakthroughs in chemistry and biology often fuel more focused research that, years later, leads to important medical advances or products such as medicines or biotechnology tools.

Sketches of Drs. Carolyn R. Bertozzi and K. Barry Sharpless above their printed names.
Credit: Niklas Elmehed.

The most recent NIGMS-supported Nobel laureates are Carolyn R. Bertozzi, Ph.D., the Anne T. and Robert M. Bass Professor in the School of Humanities and Sciences at Stanford University in Stanford, California, and K. Barry Sharpless, Ph.D., the W.M. Keck Professor of Chemistry at the Scripps Research Institute in La Jolla, California. They, along with Morten Meldal, Ph.D., a professor of chemistry at the University of Copenhagen in Denmark, are being recognized with the 2022 Nobel Prize in chemistry for their work on a transformative scientific approach known as “click chemistry.” The three scientists will receive their awards during a ceremony in Stockholm, Sweden, on December 10, 2022.

Continue reading “The Chemistry Clicked: Two NIGMS-Funded Researchers Receive Nobel Prize”

Dynamic Duo Degrees: NIGMS-Funded Programs Support M.D./D.V.M.-Ph.D. Training

0 comments
Amelia Wilhelm wearing a white doctor’s coat and posing outside in front of sunflowers.
Amelia Wilhelm. Credit: Courtesy of Amelia Wilhelm.

“Being able to ground your research in questions coming directly from your patients and their families is so meaningful and a huge part of why I’m interested in becoming a clinician-scientist,” says Amelia Wilhelm, an M.D.-Ph.D. student in the NIGMS-supported Medical Scientist Training Program (MSTP) at the University of Washington in Seattle. MSTPs prepare students to combine clinical practice and rigorous scientific research in their future careers.

Continuing the Family Tradition in Science

As a child of two scientists, Amelia was exposed to research and medical careers from an early age. She earned a bachelor’s degree in chemistry at Bates College in Lewiston, Maine, and then began working as a lab technician at the Children’s Hospital of Philadelphia in Pennsylvania. Watching the principal investigator of her lab, clinician-scientist Lindsey A. George, M.D., interact with patients inspired Amelia to pursue a similar career.

Continue reading “Dynamic Duo Degrees: NIGMS-Funded Programs Support M.D./D.V.M.-Ph.D. Training”

Empowering Biomedical Research in Rural West Virginia

0 comments

Public health crises often disproportionately impact rural America. Sally L. Hodder, M.D., works to alleviate these disparities, especially regarding the opioid crisis and the COVID-19 pandemic. She’s the director of the West Virginia Clinical and Translational Science Institute (WVCTSI), the associate vice president of clinical and translational research, and a professor of medicine at West Virginia University.

A headshot of Dr. Sally Hodder.
Dr. Sally Hodder. Credit: West Virginia University.

Dr. Hodder’s work is focused in West Virginia, but her results are valuable assets to researchers across the country. Not only does treating chronic diseases in rural populations contribute to the overall understanding of those diseases, but engaging with and involving people in those communities in research makes science more accessible to them. Dr. Hodder says, “When folks participate in the science, when there is good community discussion about the trial designs and the results, then I think those populations may be more trusting of the results.”

Continue reading “Empowering Biomedical Research in Rural West Virginia”

Science Snippet: ATP’s Amazing Power

0 comments
A twisted, blue crystalline structure with a small yellow molecule inside it.
ATP (yellow) powering a protein (blue) that moves material within cells and helps them divide. Credit: Charles Sindelar, Yale University.

Just as electricity powers almost every modern gadget, the tiny molecule adenosine triphosphate (ATP) is the major source of energy for organisms’ biochemical reactions. ATP stores energy in the chemical bonds that hold its three phosphate groups together—the triphosphate part of its name. In the human body, ATP powers processes such as cell signaling, muscle contraction, nerve firing, and DNA and RNA synthesis. Because our cells are constantly using and producing ATP, each of us turns over roughly our body weight in the molecule every day!

Our bodies can produce ATP in several ways, but the most common is cellular respiration—a multistep process in which glucose molecules from our diet and oxygen react to form water and carbon dioxide. The breakdown of a single molecule of glucose in this way releases energy, which the body captures and stores in around 32 ATP molecules. Along with oxygen, mitochondria are crucial for producing ATP through cellular respiration, which is why they’re sometimes called the powerhouses of cells.

Continue reading “Science Snippet: ATP’s Amazing Power”

Sparking Rural Students’ Interest in STEM

0 comments

When asked why he leads the NIGMS-supported Science Education Partnership Award (SEPA) program at Dartmouth College in Hanover, New Hampshire, Roger D. Sloboda, Ph.D., the Ira Allen Eastman Professor of Biological Sciences (emeritus), shares a story. Several years ago, he learned of a public-school science teacher in rural New Hampshire who had a very limited budget for classroom equipment. With her annual budget, she’d been able to buy a single stainless-steel laboratory cart. “Next year, I hope to buy a piece of equipment to put on it,” she said. A short time later, Dr. Sloboda attended a scientific meeting and talked to a student from a private school in Washington, D.C., who was presenting a poster about his research project studying the effects of household chemicals on zebrafish development. Dr. Sloboda asked the student how he was able to work with zebrafish, because they require specialized, expensive facilities. The student responded that his school maintained its own zebrafish facility.

Continue reading “Sparking Rural Students’ Interest in STEM”

Advancing American Indian and Alaska Native Health Through Research, Training, and Engagement

0 comments

American Indian and Alaska Native (AI/AN) populations have long experienced health disparities such as higher rates of diabetes, certain cancers, and mental health conditions than those of other Americans. One contributing factor in these disparities is underrepresentation of AI/AN populations in biomedical science—as study participants, researchers, and health professionals. Unfamiliarity with health care options and opportunities, coupled with a distrust of biomedical research resulting from unethical studies in the past, have exacerbated this underrepresentation.

NIGMS-supported researchers, including Native scientists, are partnering with AI/AN Tribes to help reduce health disparities by conducting research focused on AI/AN health priorities and building infrastructure that supports research in those communities. They’re also preparing Native students to pursue careers in science and medicine. In this post, you’ll meet four scientists advancing AI/AN health.

Continue reading “Advancing American Indian and Alaska Native Health Through Research, Training, and Engagement”

In Other Words: The Measure of a Mole

1 comment

When we encounter the word mole, some of us might think of a small, fuzzy animal that burrows in gardens, or perhaps the common, pigmented marks on our skin. But in chemistry, the mole is a key unit of measurement; its name is derived from the word molecule. Similar to how “dozen” is another way of saying 12, “mole” is another way of saying 602,214,076,000,000,000,000,000 (that’s about 602 billion trillion), specifically for elementary entities such as molecules and atoms. Scientists sometimes abbreviate this number as 6.02 x 1023, which is why Mole Day is celebrated from 6:02 a.m. to 6:02 p.m. on October 23 each year.

Below the title, “Mole: In Other Words,” two images are separated by a jagged line. On the left is a picture of a mole—the animal. On the right is a cartoon image of atoms. Under the images, text reads: “Did you know? In chemistry, the mole is a unit of measurement. One mole is 602,214,076,000,000,000,000,000 elementary entities, such as atoms or molecules.”
Credit: NIGMS.
Continue reading “In Other Words: The Measure of a Mole”