Author: Rachel Crowley

Rachel enjoys using her medicinal chemistry training to create accessible public health content and engaging science education resources.

Posts by Rachel Crowley

Chemistry by the Numbers

0 comments

Numbers are everywhere in chemistry. You can’t balance equations, determine limiting reactants, or calculate percent yields without them. So, let’s dive into some of the significant figures in chemistry!

3

An atom shown as three red and four blue spheres clustered in the center, with three gray spheres each on a gray orbit encircling the cluster.
A lithium atom with three protons (red) and four neutrons (blue) in the nucleus and three gray electrons orbiting around them. Credit: iStock.

That’s the number of different types of particles—protons, neutrons, and electrons—that make up atoms, the basic unit of all matter. Protons are positively charged, neutrons are neutral, and electrons are negatively charged. The number of protons in an atom determines what element it is, and atoms usually have an equal number of protons and electrons. Atoms can have different numbers of neutrons, though, and atoms with the same number of protons and different numbers of neutrons are called isotopes. Protons and neutrons make up the core—or nucleus—of an atom, and electrons orbit around them.

4.9 Million

That’s how many miles per hour the electron in one hydrogen atom in a molecule of water is moving. At that rate, the electron could make it from New York City to Los Angeles in about 2 seconds!

Continue reading “Chemistry by the Numbers”

How Many Ounces Are in a Cup—and Other Measurement Morsels

0 comments
A measuring cup that amounts to 1 cup or converted measurements of 8 ounces, 16 tablespoons, or 240 milliliters. A measuring spoon set showing one spoon that amounts to 1 tablespoon or converted measurements of 1/2 ounce or 3 teaspoons.
Credit: NIGMS.

Do you find yourself frustrated while baking when trying to convert between measuring units, like cups to ounces? First of all, we can help with that one: 1 cup is equal to 8 ounces (oz), 16 tablespoons (Tbsp), 48 teaspoons (tsp), or 240 milliliters (mL).

Based on their names, you can probably guess that people began using the tools they had, like cups, teaspoons, and tablespoons, to measure ingredients in the kitchen. They eventually standardized these units of measure because not all spoons or cups were the same size. So now, instead of a recipe calling for milk that fills half a teacup or enough water to fill a coffee cup, we use the standard measuring cup, tablespoon, and teaspoon. In the research lab, scientists use scales and balances to measure solids—not cups—and a variety of tools to measure liquid, from syringes and pipettes to graduated cylinders and flasks—but never spoons!

Continue reading “How Many Ounces Are in a Cup—and Other Measurement Morsels”

Inventing New Ways to Build Bonds: Q&A With Elias Picazo

1 comment
 A portrait image of Dr. Elias Picazo.
Credit: Courtesy of Dr. Elias Picazo.

“Science has always impacted me, but I didn’t realize how much until I actually became a scientist,” says Elias Picazo, Ph.D., assistant professor of chemistry at the University of Southern California in Los Angeles. We talked to Dr. Picazo about his path to becoming a scientist, some of the challenges he faced along the way, and his research inventing new ways to make chemical bonds.

Get to Know Dr. Picazo

  • Books or movies? Movies
  • Beach or mountains? Mountains
  • Favorite music genre? Pop
  • Rainy or sunny? Sunny
  • Salty or sweet? Sweet
  • Music or podcast? Podcast
  • Washing glassware in the lab or dishes in your kitchen? Glassware
  • Favorite lab tool? Magnetic stirrer
Continue reading “Inventing New Ways to Build Bonds: Q&A With Elias Picazo”

Cells by the Numbers

1 comment
If you like this post, check out our other “By the Numbers” posts!

Cells are the basic unit of life—and the focus of much scientific study. They’re categorized based on whether or not they have a distinct nucleus. Prokaryotic cells, like some bacteria such as blue-green algae, don’t have distinct nuclei. Instead, their nuclear material is spread throughout the cytoplasm. Eukaryotic cells—or cells with nuclei—make up humans, animals, plants, and fungi. Here are just a few of cells’ fascinating facets.

30 Trillion

That’s about how many human cells adults have in their bodies. Males are on the higher side with about 36 trillion cells, while females average about 28 trillion cells.

Continue reading “Cells by the Numbers”

Building the Future of Research: Celebrating Postdocs and Training Programs

0 comments

To celebrate the 2024 National Postdoc Appreciation Week, we’re revisiting some scientists we’ve interviewed on the blog and how their postdoctoral experiences and NIGMS-funded training shaped their careers.

Headshots of the six researchers featured in the blog post.
Top row, left to right: Drs. Ahna Skop, Jeff Mudridge, and Nkrumah Grant. Bottom row, left to right: Drs. Mia Huang, Jesse Hall, and Caroline Palavicino-Maggio. Credit: NIGMS.
Continue reading “Building the Future of Research: Celebrating Postdocs and Training Programs”

Exploring Ribosome Assembly and RNA Modification: Q&A With Eda Koculi

0 comments
Dr. Eda Koculi standing in a lab with an old chemistry textbook lying open on the bench behind her.
Dr. Koculi standing in her lab next to her childhood chemistry book that changed her life. Credit: Luis Miranda, UTEP Media.

“Being a scientist is thrilling, and it’s also tremendously fun,” says Eda Koculi, Ph.D., assistant professor of chemistry and biochemistry at the University of Texas at El Paso (UTEP). “In my opinion, science is the only profession that allows a person to simultaneously express their creativity, quench their intellectual curiosity, and serve society.” We spoke with Dr. Koculi about how she became a researcher, what she’s uncovering about how ribosomes are built and modified, and how she encourages students to pursue scientific careers.

Get to Know Dr. Koculi

  • Coffee or tea? Coffee
  • Favorite music genre? Classical
  • Salty or sweet? Salty
  • Early bird or night owl? Night owl
  • Washing glassware in the lab or dishes in your kitchen? Glassware
  • What was your childhood dream job? A scientist or a teacher—and I have both my dream jobs.
  • Favorite hobby? Hiking
  • Favorite piece of lab safety equipment? Geiger counter
  • Favorite molecule? RNA
  • A scientist (past or present) you’d like to meet? Marie Curie

Continue reading “Exploring Ribosome Assembly and RNA Modification: Q&A With Eda Koculi”

Research Organism Superheroes: Hawaiian Bobtail Squid

0 comments
A Hawaiian bobtail squid swimming in front of a submerged hand, appearing as if to fit into the palm of the hand.
This adult Hawaiian bobtail squid swimming in front of a submerged hand illustrates its small size. Credit: The labs of Margaret J. McFall-Ngai, Carnegie Institution for Science/California Institute of Technology, and Edward G. Ruby, California Institute of Technology.

The Hawaiian bobtail squid (Euprymna scolopes) is only about as big as a golf ball, but what it lacks in size, it makes up for in its superpower—an invisibility cloak to be exact. Thanks to its symbiotic relationship with the bioluminescent bacteria Vibrio fischeri, it’s able to seemingly disappear from its predators when swimming at night.  

These super-squid live in the shallow coastal waters in the Pacific, like those around the Hawaiian Islands. They’re nocturnal, so they hunt their prey—small shrimp and other crustaceans—at night and hide, often by burying themselves in the sand, during the day while they rest. Although Hawaiian bobtail squid live their short 3-10 month lives around one another, they generally only interact for breeding, and even then, they only reproduce once in their lifetimes and die soon after reproduction.

Continue reading “Research Organism Superheroes: Hawaiian Bobtail Squid”

Genetics by the Numbers

2 comments
If you like this post, check out our other “By the Numbers” posts!

Even though scientists have been studying genetics since the mid-19th century, they continue to make new discoveries about genes and how they impact our health on a regular basis. NIGMS researchers study how genes are expressed and regulated, how gene variants with different “spellings” of their genetic code affect health, and much more. Get the drop on DNA and the gist of genes with these fast facts:

Continue reading “Genetics by the Numbers”

What Do Fats Do in the Body?

0 comments

It’s common knowledge that too much cholesterol and other fats can lead to disease and that a healthy diet involves watching how much fatty food we eat. However, our bodies need a certain amount of fat to function—and we can’t make it from scratch.

A colorful, flowerlike structure.
Hepatocytes, like the one shown here, are the most abundant type of cell in the human liver. One important role they play is producing bile, a liquid that aids in digesting fats. Credit: Donna Beer Stolz, University of Pittsburgh.

Triglycerides, cholesterol, and other essential fatty acids—the fats our bodies can’t make on their own—store energy, insulate us, and protect our vital organs. They act as messengers, helping proteins do their jobs. They also start chemical reactions that help control growth, immune function, reproduction, and other aspects of basic metabolism. Fats also help the body stockpile certain nutrients. Vitamins A, D, E, and K, for example, are stored in the liver and in fatty tissues.

The cycle of making, breaking, storing, and using fats is at the core of how all animals, including humans, regulate their energy. An imbalance in any step can result in disease. For instance, having too many triglycerides in our bloodstream raises our risk of clogged arteries, which can lead to heart attack and stroke.

Continue reading “What Do Fats Do in the Body?”