Category: Chemistry, Biochemistry and Pharmacology

Science Snippet: ATP’s Amazing Power

A twisted, blue crystalline structure with a small yellow molecule inside it.
ATP (yellow) powering a protein (blue) that moves material within cells and helps them divide. Credit: Charles Sindelar, Yale University.

Just as electricity powers almost every modern gadget, the tiny molecule adenosine triphosphate (ATP) is the major source of energy for organisms’ biochemical reactions. ATP stores energy in the chemical bonds that hold its three phosphate groups together—the triphosphate part of its name. In the human body, ATP powers processes such as cell signaling, muscle contraction, nerve firing, and DNA and RNA synthesis. Because our cells are constantly using and producing ATP, each of us turns over roughly our body weight in the molecule every day!

Our bodies can produce ATP in several ways, but the most common is cellular respiration—a multistep process in which glucose molecules from our diet and oxygen react to form water and carbon dioxide. The breakdown of a single molecule of glucose in this way releases energy, which the body captures and stores in around 32 ATP molecules. Along with oxygen, mitochondria are crucial for producing ATP through cellular respiration, which is why they’re sometimes called the powerhouses of cells.

Continue reading “Science Snippet: ATP’s Amazing Power”

In Other Words: The Measure of a Mole

1 comment

When we encounter the word mole, some of us might think of a small, fuzzy animal that burrows in gardens, or perhaps the common, pigmented marks on our skin. But in chemistry, the mole is a key unit of measurement; its name is derived from the word molecule. Similar to how “dozen” is another way of saying 12, “mole” is another way of saying 602,214,076,000,000,000,000,000 (that’s about 602 billion trillion), specifically for elementary entities such as molecules and atoms. Scientists sometimes abbreviate this number as 6.02 x 1023, which is why Mole Day is celebrated from 6:02 a.m. to 6:02 p.m. on October 23 each year.

Below the title, “Mole: In Other Words,” two images are separated by a jagged line. On the left is a picture of a mole—the animal. On the right is a cartoon image of atoms. Under the images, text reads: “Did you know? In chemistry, the mole is a unit of measurement. One mole is 602,214,076,000,000,000,000,000 elementary entities, such as atoms or molecules.”
Credit: NIGMS.
Continue reading “In Other Words: The Measure of a Mole”

National Chemistry Week: Recent Interviews With NIGMS-Funded Chemists

Logo that says, “National Chemistry Week,” with a test tube in place of the letter i in the word “chemistry. Credit: ACS Website.

It’s almost National Chemistry Week (NCW)! Each year, the American Chemical Society (ACS) unites scientists, undergraduate students, high school chemistry clubs, and other groups through this community-based program to reach the public—especially elementary and middle school
students—with positive chemistry messages.

Continue reading “National Chemistry Week: Recent Interviews With NIGMS-Funded Chemists”

Career Conversations: Q&A with Bioengineer César de la Fuente

Headshot of Dr. de la Fuente.
Dr. César de la Fuente. Credit: Martí E. Berenguer.

“Science provides adventure and excitement every single day. When you’re pushing boundaries, you get to jump into the abyss of new areas. It can be scary, but it’s an incredible opportunity to try to improve our world and people’s lives,” says César de la Fuente, Ph.D., a Presidential Assistant Professor in the Perelman School of Medicine and School of Engineering and Applied Science at the University of Pennsylvania, Philadelphia. Our interview with Dr. de la Fuente highlights his journey of becoming a scientist and his research using artificial intelligence to discover new drugs.

Q: How did you first become interested in science?

A: I’ve always been fascinated by the world around me. I grew up in a town in northwest Spain, right on the Atlantic Ocean. As a kid, I would go to the beach to investigate marine organisms and bring home all sorts of different fish to study. My mom wasn’t too happy about that! We’re all born scientists, but we tend to lose that curiosity as we enter adulthood. The key is to not lose our ability to learn every day.

Continue reading “Career Conversations: Q&A with Bioengineer César de la Fuente”

Career Conversations: Q&A with Organic Chemist Elizabeth Parkinson

Dr. Parkinson wearing a lab coat and gloves and holding a Petri dish.
Dr. Elizabeth Parkinson. Credit: Courtesy of Dr. Elizabeth Parkinson.

“Being able to discover new, unexpected things is why you wake up every day and go to work as a scientist. The other part is hopefully to have a positive impact on human health—through combatting conditions ranging from antibiotic resistance to cancer,” says Elizabeth Parkinson, Ph.D., an assistant professor of organic chemistry at Purdue University in West Lafayette, Indiana. In an interview, Dr. Parkinson shared with us her path to a scientific career, research on natural products made by soil-dwelling bacteria, and advice for students.

Q: What sparked your interest in science?

A: My high school freshman biology teacher, Mr. O’Connell, first got me interested in science. He’d bring objects to class, and we’d have to guess how they might relate to the day’s subject matter. One time he brought strawberries, and we isolated DNA from them, which I really enjoyed. I also participated in a science fair for the first time that year. My project focused on how the color of light affected plant growth, and that was a very fun experience.

Continue reading “Career Conversations: Q&A with Organic Chemist Elizabeth Parkinson”

Science Snippet: Lipids in the Limelight

A large blue oval surrounded by small yellow circles.
Spheres of lipids (yellow) inside a cell. The nucleus is shown in blue. Credit: James Olzmann, University of California, Berkeley.

Have you ever wondered why your cells don’t spill into each other or what keeps your skin separate from your blood? The answer to both is lipids—a diverse group of organic compounds that don’t dissolve in water. They’re one of the four major building blocks of our bodies, along with proteins, carbohydrates, and nucleic acids. Types of lipids include:

  • Fats, necessary for our bodies’ long-term energy storage and insulation. Some essential vitamins are fat soluble, meaning they must be associated with fat molecules to be effectively absorbed.
  • Phospholipids, which make up a large part of cell and organelle membranes.
  • Waxes, which help protect delicate surfaces. For instance, earwax protects the skin of the ear canal.
  • Steroids, including cholesterol, a precursor to many hormones, which helps maintain the fluidity of cell membranes.
Continue reading “Science Snippet: Lipids in the Limelight”

All About Anesthesia


If you’ve ever had a surgery or even a minor procedure, you’ve probably benefited from the medical marvel of anesthesia—the treatment that doctors, called anesthesiologists, give to keep you from feeling pain. And it’s come a long way since the discovery of diethyl ether. Here we dive into the different types, its history, and the way it works.

An infographic titled “The Chemistry of Anesthetics.” Under “A Brief History of Anesthesia” are the chemical structures and dates of first clinical use of diethyl ether (1842), nitrous oxide (1844), cocaine (1884), lidocaine (1948), propofol (1989), and sevoflurane (1990). Under “Types of Anesthesia” are graphics describing general, regional, local anesthesia, and sedation. Under “How Anesthetics Work” is a diagram of a local anesthetic blocking a sodium ion channel in a cell membrane. The chemistry of anesthetics has advanced since the 1840s, producing different types of anesthesia depending on the compounds involved. See more chemistry infographics like this one in C&EN’s Periodic Graphics collection. Click to enlarge.

Continue reading “All About Anesthesia”

Career Conversations: Q&A with Medicinal Inorganic Chemist Eszter Boros

Dr. Boros wearing a lab coat and gloves and holding a flask.
Dr. Eszter Boros. Credit: Courtesy of Dr. Eszter Boros.

“As a researcher, you get to learn something new every day, and that knowledge feeds more questions. It’s this eternal learning process, and I find that really enticing about being in science,” says Eszter Boros, Ph.D., an assistant professor of chemistry at Stony Brook University in Stony Brook, New York. Our interview with Dr. Boros highlights her journey of becoming a scientist and her research on biomedical applications of metals.

Q: What drew you to science?

A: I was born and raised in Switzerland, and I went to a linguistics-focused high school there, but I gravitated to chemistry because I loved that we could understand the world at a molecular level and see the macroscopic consequences of microscopic processes.

Continue reading “Career Conversations: Q&A with Medicinal Inorganic Chemist Eszter Boros”

Three Brothers Are Making Research a Family Affair

From left to right: Caleb, Paul, and Adam Worsley sitting on stools in a chemistry lab.
Caleb, Paul, and Adam Worsley. Credit: Pittsburg State University.

“You’re doing something really important with people who are important to you,” Paul Worsley remarks when asked about having his younger brothers Caleb and Adam as lab mates. The trio are undergraduate students working in the lab of Santimukul Santra, Ph.D., at Pittsburg State University in Pittsburg, Kansas.

Paul seated at his chemistry fume hood. Credit: Pittsburg State University.

All three brothers are part of the Kansas IDeA Networks of Biomedical Research Excellence (K-INBRE). Paul is currently a junior majoring in biology and history. He plans to go to medical school when he graduates, but his time in the lab has given him a love for research—and has even led him to toy with the idea of going to graduate school instead. His twin brothers Caleb and Adam are only freshmen, but they both think they want to pursue scientific research when they graduate.

When Paul was a sophomore, he applied for a K-INBRE research spot in Dr. Santra’s lab and was immediately accepted. He quickly realized that organic chemistry in the lab was much different—and more exciting—than anything he’d seen in the classroom. “I like organic synthesis because it really tests your knowledge,” he says. “Answering exam questions is way different than actually doing it in a lab.” Despite the challenges that came with research, Paul was clearly doing great work because one day Dr. Santra joked, “Hey, you got any brothers?” Paul responded, “Actually, yes.”

Continue reading “Three Brothers Are Making Research a Family Affair”

In Other Words: Some Antagonists Are Heroes

1 comment

Many of us learned in English class that an antagonist is a person or thing that a hero fights. But in biomedical science, an antagonist is a molecule that binds to a cellular receptor to prevent a response, such as a muscle contraction or hormone release. Antagonists can be important medical treatments, like the antagonist naloxone—also known as Narcan —that can reverse an opioid overdose.

Below the title “Antagonist: In Other Words,” two images are separated by a jagged line. On the left is a dark figure with a hat, and on the right is an antagonist bound to a ribbon model depiction of a receptor. Under the images, text reads: “Did you know? In biomedical science, an antagonist is a molecule that binds to a cellular receptor to prevent a response, such as a muscle contraction or hormone release.” 
Credit: NIGMS; Yekaterina Kadyshevskaya, The Scripps Research Institute.
Continue reading “In Other Words: Some Antagonists Are Heroes”