Tag: Genomics

In Other Words: Translation Isn’t Only for Languages

0 comments

In everyday use, most people understand translation to mean converting words from one language to another. But when biologists talk about translation, they mean the process of making proteins based on the genetic information encoded in messenger RNA (mRNA). Proteins are essential for virtually every process in our bodies, from transporting oxygen to defending against infection, so translation is vital for keeping us alive and healthy.

Below the title “Translation: In Other Words,” two images are separated by a jagged line. On the left is a ribosome producing a protein, and on the right is a large speech bubble with the word “hello” surrounded by smaller speech bubbles with greetings in other languages. Under the images, text reads, “Did you know? In biomedical science, translation refers to the process of making proteins based on genetic information encoded in messenger RNA.”
Credit: NIGMS.
Continue reading “In Other Words: Translation Isn’t Only for Languages”

Quiz: Are You a Genetics Genius?

2 comments

Genes are segments of DNA. They contain instructions for building one or more molecules that help the body work. Researchers in the field of genetics study genes and heredity—how certain traits are passed from parents to their offspring through DNA. NIGMS supports many scientists who investigate the genetics of people and research organisms to better understand human health and disease.

Take our quiz below to test how much you know about genetics. Then check out our new fact sheet on genetics to learn more. For more quizzes and other fun learning tools, visit our activities and multimedia webpage.

Continue reading “Quiz: Are You a Genetics Genius?”

Gone Fishing: Teaching Bioinformatics With Skate DNA

1 comment

As computers have advanced over the past few decades, researchers have been able to work with larger and more complex datasets than ever before. The science of using computers to investigate biological data is called bioinformatics, and it’s helping scientists make important discoveries, such as finding versions of genes that affect a person’s risk for developing various types of cancer. Many scientists believe that almost all biologists will use bioinformatics to some degree in the future.

A cluster of various-sized dots connected by glowing lines.
Bioinformatics software was used to create this representation of a biological network. Credit: Benjamin King, University of Maine.

However, bioinformatics isn’t always included in college biology programs, and many of today’s researchers received their training before bioinformatics was widely taught. To address these gaps, the bioinformatics cores of the five Northeast IDeA Networks of Biomedical Research Excellence (INBREs)—located in Maine, Rhode Island, Delaware, Vermont, and New Hampshire—have worked together to offer basic bioinformatics training to students and researchers. The collaboration started in 2009 with a project where researchers sequenced the genome of a fish called the little skate (Leucoraja erinacea) and used the data to develop trainings.

Continue reading “Gone Fishing: Teaching Bioinformatics With Skate DNA”

Scientist Interview: Investigating Circadian Rhythms with Michael W. Young

1 comment

Sudden changes to our schedules, like the end of daylight saving time this Sunday or flying across time zones, often leave us feeling off kilter because they disrupt our bodies’ circadian rhythms. Circadian rhythms are physical, mental, and behavioral changes that follow a daily cycle. When these “biological clocks” are disrupted, our bodies eventually readjust. However, some people have conditions that cause their circadian rhythms to be permanently out of sync with their surroundings.

Continue reading “Scientist Interview: Investigating Circadian Rhythms with Michael W. Young”

PECASE Honoree Sohini Ramachandran Studies the Genetic Foundations of Traits in Diverse Populations

0 comments
Headshot of Sohini Ramachandran. Sohini Ramachandran, Brown University.
Credit: Danish Saroee/Swedish Collegium for Advanced Study.

Recent advances in computing enable researchers to explore the life sciences in ways that would have been impossible a few decades ago. One new tool is the ability to sequence genomes, revealing people’s full DNA blueprints. The collection of more and more genetic data allows researchers to compare the DNA of many people and observe variations, including those shared by people with a common ancestry.

Sohini Ramachandran Link to external web site, Ph.D., is director of the Center for Computational Molecular Biology and associate professor of biology and computer science at Brown University in Providence, Rhode Island. She is also a recent recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE). Dr. Ramachandran researches the causes and consequences of human genetic variations using computer models. Starting with genomic data from living people, her lab applies statistical methods, mathematical modeling, and computer simulations to discover how human populations moved and changed genetically over time.

Continue reading “PECASE Honoree Sohini Ramachandran Studies the Genetic Foundations of Traits in Diverse Populations”

Crowdsourcing Science: Using Competition to Drive Creativity

0 comments
Six student researchers sitting around a table and collaborating on a project. Credit: iStock.

Historically, crowdsourcing has played an important role in certain fields of scientific research. Wildlife biologists often rely on members of the public to monitor animal populations. Using backyard telescopes, amateur astronomers provide images and measurements that lead to important discoveries about the universe. And many meteorologists use data collected by citizen scientists to study weather conditions and patterns.

Now, thanks largely to advances in computing, researchers in computational biology and data science are harnessing the power of the masses and making discoveries that provide valuable insights into human health.

Continue reading “Crowdsourcing Science: Using Competition to Drive Creativity”

Looking Back at the Top Three Posts of 2019

0 comments

Over the past 12 months, we’ve explored a variety of topics in genetics, cell biology, chemistry, and careers in the biomedical sciences. As we ring in the new year, we bring you our top three posts of 2019. If your favorite is missing, let us know what it is in the comments section below!

Amazing Organisms and the Lessons They Can Teach Us

Two Hawaiian bobtail squid with yellow skin, brown spots, and black eyes catching a neon green reflection. Hawaiian bobtail squid. Credit: Dr. Satoshi Shibata.

Studying research organisms, such as those featured in this post, teaches us about ourselves. These amazing creatures, which have some traits similar to our own, may hold the key to preventing and treating an array of complex diseases.

Continue reading “Looking Back at the Top Three Posts of 2019”

Computational Biologist Melissa Wilson on Sex Chromosomes, Gila Monsters, and Career Advice

1 comment
Melissa Wilson wearing a floral dress and speaking beside a podium during her lecture. Dr. Melissa Wilson.
Credit: Chia-Chi Charlie Chang.

The X and Y chromosomes, also known as sex chromosomes, differ greatly from each other. But in two regions, they are practically identical, said Melissa Wilson Link to external web site, assistant professor of genomics, evolution, and bioinformatics at Arizona State University.

“We’re interested in studying how the process of evolution shaped the X and the Y chromosome in gene content and expression and how that subsequently affects literally everything else that comes with being a human,” she said at the April 10 NIGMS Director’s Early-Career Investigator (ECI) Lecture at NIH.

Continue reading “Computational Biologist Melissa Wilson on Sex Chromosomes, Gila Monsters, and Career Advice”

Genomic Gymnastics of a Single-Celled Ciliate and How It Relates to Humans

0 comments
Laura Landweber
Credit: Denise Applewhite.
Laura Landweber
Grew up in: Princeton, New Jersey
Job site: Columbia University, New York City
Favorite food: Dark chocolate and dark leafy greens
Favorite music: 1940’s style big band jazz
Favorite hobby: Swing dancing
If I weren’t a scientist I would be a: Chocolatier (see “Experiments in Chocolate” sidebar at bottom of story)

One day last fall, molecular biologist Laura Landweber Link to external web site surveyed the Princeton University lab where she’d worked for 22 years. She and her team members had spent many hours that day laboriously affixing yellow Post-it notes to the laboratory equipment—microscopes, centrifuges, computers—they would bring with them to Columbia University, where Landweber had just been appointed full professor. Each Post-it specified the machinery’s location in the new lab. Items that would be left behind—glassware, chemical solutions, furniture, office supplies—were left unlabeled.

As Landweber viewed the lab, decorated with a field of sunny squares, her thoughts turned to another sorting process—the one used by her primary research subject, a microscopic organism, to sift through excess DNA following mating. Rather than using Post-it notes, the creature, a type of single-celled organism called a ciliate, uses small pieces of RNA to tag which bits of genetic material to keep and which to toss.

Landweber is particularly fond of Oxytricha trifallax, a ciliate with relatives that live in soil, ponds and oceans all over the world. The kidney-shaped cell is covered with hair-like projections called cilia that help it move around and devour bacteria and algae. Oxytricha is not only bizarre in appearance, it’s also genetically creative.

Unlike humans, whose cells are programmed to die rather than pass on genomic errors, Oxytricha cells appear to delight in genomic chaos. During sexual reproduction, the ciliate shatters the DNA in one of its two nuclei into hundreds of thousands of pieces, descrambles the DNA letters, throws most away, then recombines the rest to create a new genome.

Landweber has set out to understand how—and possibly why—Oxytricha performs these unusual genomic acrobatics. Ultimately, she hopes that learning how Oxytricha rearranges its genome can illuminate some of the events that go awry during cancer, a disease in which the genome often suffers significant reorganization and damage.

Oxytricha’s Unique Features

Oxytricha carries two separate nuclei—a macronucleus and a micronucleus. The macronucleus, by far the larger of the two, functions like a typical genome, the source of gene transcription for proteins. The tiny micronucleus only sees action occasionally, when Oxytricha reproduces sexually.

Oxytricha trifallax cells in the process of mating
Two Oxytricha trifallax cells in the process of mating. Credit, Robert Hammersmith.

What really makes Oxytricha stand out is what it does with its DNA during the rare occasions that it has sex. When food is readily available, Oxytricha procreates without a partner, like a plant grown from a cutting. But when food is scarce, or the cell is stressed, it seeks a mate. When two Oxytricha cells mate, the micronuclear genomes in each cell swap DNA, then replicate. One copy of the new hybrid micronucleus remains intact, while the other breaks its DNA into hundreds of thousands of pieces, some of which are tagged, recombined, then copied another thousand-fold to form a new macronucleus. Continue reading “Genomic Gymnastics of a Single-Celled Ciliate and How It Relates to Humans”