Tag: Genomics

Genetics by the Numbers

0 comments

Even though scientists have been studying genetics since the mid-19th century, they continue to make new discoveries about genes and how they impact our health on a regular basis. NIGMS researchers study how genes are expressed and regulated, how gene variants with different “spellings” of their genetic code affect health, and much more. Get the drop on DNA and the gist of genes with these fast facts:

Continue reading “Genetics by the Numbers”

What Is Genetics?

0 comments
This post is the first in our miniseries on genetics. Stay tuned for more!

Genetics is the study of genes and heredity—how traits are passed from parents to children through DNA. A gene is a segment of DNA that contains instructions for building one or more molecules that help the body work. Researchers estimate that humans have about 20,000 genes, which account for about 1 percent of our DNA. The remainder of the DNA plays a role in regulating genes, and scientists are researching other potential functions.

Continue reading “What Is Genetics?”

What Is Pharmacology?

0 comments
A collage of different cartoon images showing scientists working across a spectrum of basic science, chemistry, biology, research, genetics, and medicine, illustrated by images of an EKG readout, test tubes and a pipette, a syringe and medicine bottle, a chemical structure, a microscope, a pill bottle and pill, a data chart, a hospital, a DNA strand, and a human silhouette.
Credit: iStock.

Pharmacology is the study of how molecules, such as medicines, interact with the body. Scientists who study pharmacology are called pharmacologists, and they explore the chemical properties, biological effects, and therapeutic uses of medicines and other molecules. Their work can be broken down into two main areas:

  • Pharmacokinetics is the study of how the body acts on a medicine, including its processes of absorption, distribution, metabolism, and excretion (ADME).
  • Pharmacodynamics is the study of how a medicine acts in the body—both on its intended target and throughout all the organs and tissues in the body.
Continue reading “What Is Pharmacology?”

Propelling Rare Disease Research for More Than 50 Years

0 comments
Many small, plastic vials, one of which a robot arm is lifting from an illuminated tray.
Vials of samples from the NIGMS HGCR. Credit: Coriell Institute for Medical Research.

The year 2022 marked 50 years since the creation of the NIGMS Human Genetic Cell Repository (HGCR) at the Coriell Institute for Medical Research in Camden, New Jersey. The NIGMS HGCR consists of cell lines and DNA samples with a focus on those from people with rare, heritable diseases. “Many rare diseases now have treatments because of the samples in the NIGMS HGCR,” says Nahid Turan, Ph.D., Coriell’s chief biobanking officer and co-principal investigator of the NIGMS HGCR. She gives the example of a rare disease advocacy group who worked with the NIGMS HGCR to establish a cell line several decades ago. It was used to identify a gene associated with the disease, which aided in the development of five treatments that have received approval from the Food and Drug Administration.

Researchers have also studied NIGMS HGCR’s samples to help advance knowledge of basic biology and genetics, and even to support the development of a vaccine for a deadly virus.

Continue reading “Propelling Rare Disease Research for More Than 50 Years”

Advancing American Indian and Alaska Native Health Through Research, Training, and Engagement

0 comments

American Indian and Alaska Native (AI/AN) populations have long experienced health disparities such as higher rates of diabetes, certain cancers, and mental health conditions than those of other Americans. One contributing factor in these disparities is underrepresentation of AI/AN populations in biomedical science—as study participants, researchers, and health professionals. Unfamiliarity with health care options and opportunities, coupled with a distrust of biomedical research resulting from unethical studies in the past, have exacerbated this underrepresentation.

NIGMS-supported researchers, including Native scientists, are partnering with AI/AN Tribes to help reduce health disparities by conducting research focused on AI/AN health priorities and building infrastructure that supports research in those communities. They’re also preparing Native students to pursue careers in science and medicine. In this post, you’ll meet four scientists advancing AI/AN health.

Continue reading “Advancing American Indian and Alaska Native Health Through Research, Training, and Engagement”

Career Conversations: Q&A with Biochemist Alexis Komor

0 comments
A headshot of Dr. Komor.
Dr. Alexis Komor. Credit: Michelle Fredricks.

DNA is an amazingly beautiful molecule, and it’s so important. Each of our cells has only one copy of DNA, and if it gets damaged, that messes up everything else in the cell,” says Alexis Komor, Ph.D., an assistant professor of chemistry and biochemistry at the University of California, San Diego (UCSD). Check out the highlights of our interview with Dr. Komor to learn about her scientific journey, research on DNA, and advice for students.

Q: How did you decide to study chemistry?

A: I really enjoyed math and science in middle and high school. When I applied to college, I knew I wanted to major in science over math because I felt like it was more relevant to what we experience on a day-to-day basis. I ultimately went into chemistry for a silly reason, but looking back now, I’m so very grateful that I did. Chemistry has this nice balance because it allows you to not only understand how things work on a molecular level but also see how those molecular workings relate to everyday phenomena—for example, understanding how DNA damage on a molecular level can lead to negative health outcomes.

Continue reading “Career Conversations: Q&A with Biochemist Alexis Komor”

Public Alerted to Omicron in New Mexico Through Quick Detection

0 comments
A sphere with spikes on the outside cut open to reveal a long strand.
Genetic material inside a virus. Credit: iStock.

Over the past 2 years, you’ve probably heard a lot about the spread of SARS-CoV-2—the virus that causes COVID-19—and the emergence of variants. The discovery and tracking of these variants is possible thanks to genomic surveillance, a technique that involves sequencing and analyzing the genomes of SARS-CoV-2 virus particles from many COVID-19 patients. Genomic surveillance has not only shed light on how SARS-CoV-2 has evolved and spread, but it has also helped public health officials decide when to introduce measures to help protect people.

In December 2021, the NIGMS-supported SARS-CoV-2 genomic surveillance program at the University of New Mexico Health Science Center (UNM HSC) in Albuquerque detected the first known case of the Omicron variant in the state, which enabled a rapid public health response. The program’s co-leaders, assistant professors Darrell Dinwiddie, Ph.D., and Daryl Domman, Ph.D., were watching on high alert for it to enter New Mexico, and when it did, they were poised to quickly identify it:

Continue reading “Public Alerted to Omicron in New Mexico Through Quick Detection”

Quiz: Are You a Genetics Genius?

3 comments

Genes are segments of DNA. They contain instructions for building one or more molecules that help the body work. Researchers in the field of genetics study genes and heredity—how certain traits are passed from parents to their offspring through DNA. NIGMS supports many scientists who investigate the genetics of people and research organisms to better understand human health and disease.

Take our quiz below to test how much you know about genetics. For more quizzes and other fun learning tools, visit our activities and multimedia webpage.

Continue reading “Quiz: Are You a Genetics Genius?”

Gone Fishing: Teaching Bioinformatics With Skate DNA

1 comment

As computers have advanced over the past few decades, researchers have been able to work with larger and more complex datasets than ever before. The science of using computers to investigate biological data is called bioinformatics, and it’s helping scientists make important discoveries, such as finding versions of genes that affect a person’s risk for developing various types of cancer. Many scientists believe that almost all biologists will use bioinformatics to some degree in the future.

A cluster of various-sized dots connected by glowing lines.
Bioinformatics software was used to create this representation of a biological network. Credit: Benjamin King, University of Maine.

However, bioinformatics isn’t always included in college biology programs, and many of today’s researchers received their training before bioinformatics was widely taught. To address these gaps, the bioinformatics cores of the five Northeast IDeA Networks of Biomedical Research Excellence (INBREs)—located in Maine, Rhode Island, Delaware, Vermont, and New Hampshire—have worked together to offer basic bioinformatics training to students and researchers. The collaboration started in 2009 with a project where researchers sequenced the genome of a fish called the little skate (Leucoraja erinacea) and used the data to develop trainings.

Continue reading “Gone Fishing: Teaching Bioinformatics With Skate DNA”

Scientist Interview: Investigating Circadian Rhythms With Michael W. Young

1 comment

Sudden changes to our schedules, like the end of daylight saving time this Sunday or flying across time zones, often leave us feeling off kilter because they disrupt our bodies’ circadian rhythms. Circadian rhythms are physical, mental, and behavioral changes that follow a daily cycle. When these “biological clocks” are disrupted, our bodies eventually readjust. However, some people have conditions that cause their circadian rhythms to be permanently out of sync with their surroundings.

Continue reading “Scientist Interview: Investigating Circadian Rhythms With Michael W. Young”