Our Microbial Menagerie

Trillions of microorganisms inhabit us—inside and out. Scientists are surveying these microbial metropolises to learn more about their role in health. Microbiologists Darren Sledjeski of NIGMS and Andrew Goodman Exit icon of Yale University share a few details of what researchers have learned so far.

Vitruvian man filled with bacteria.
Researchers are surveying the microbes that inhabit us to learn more about their role in health. Credit: Andrew Goodman, Yale University.
  1. The majority of the microbes that inhabit us are bacteria. The rest of the microbial menagerie is fungi and viruses, including ones that infect the bacteria! Collectively, our resident microorganisms are referred to as the human microbiota, and their genomes are called the human microbiome.
  2. Our bodies harbor more bacterial cells than human ones. Even so, the microbiota accounts for less than 3 percent of a person’s body mass. That’s because our cells are up to 10,000 times bigger in volume than bacterial cells.
  3. Your collection of bacteria has more genes than you do. Scientists estimate that the genomes of gut bacteria contain 100-fold or more genes than our own genomes. For this reason, the human microbiome is sometimes called our second genome.
  4. Most of our microbes are harmless, and some are helpful. For example, harmless microbes on the skin keep infectious microbes from occupying that space. Microbes in the colon break down lactose and other complex carbohydrates that our bodies can’t naturally digest.
  5. Different microbes occupy different parts of the body. Some skin bacteria prefer the oily nooks near the nose, while others like the dry terrain of the forearm. Bacteria don’t all fare well in the same environment and have adapted to live in certain niches. The NIGMS Findings Magazine article Body Bacteria: Exploring the Skin’s Microbial Metropolis shows what types of bacteria colonize where.
  6. Screenshot from the iBiology video.
    Are we more microbial than human? Richard Losick, a microbiologist at Harvard University, explores that question in this video lecture produced by iBiology Exit icon.
  7. Each person’s microbiota is unique. The demographics of microbiota differ among individuals. Diet is one reason. Also, while a type of microbe might be part of one person’s normal microbial flora, it might not be part of another’s, and could potentially make that person sick.
  8. Host-microbial interactions are universal. Microbial communities may vary from person to person, but everyone’s got them, including other creatures. For this reason, researchers can use model organisms to tease apart the complexities of host-microbial interactions and develop broad principles for understanding them. The mouse is the most widely used animal model for microbiome studies.
  9. The role of microbiota in our health isn’t entirely clear. While it’s now well accepted that the microbial communities that inhabit us are actively involved in a range of conditions—from asthma to obesity—research studies have not yet pinpointed why or how. In other words, the results may suggest that the presence of a bacterial community is associated with a disease, but they don’t show cause and effect.
  10. Most of our microbes have not been grown in the lab. Microbes require a certain mix of nutrients and other microbes to survive, making it challenging to replicate their natural environments in a petri dish. New culturing techniques are enabling scientists to study previously uncultivated microbes.
  11. The impact of probiotic and prebiotic products isn’t clear. Fundamental knowledge gaps remain regarding how these products may work and what effects they might have on host-microbial interactions. A new NIH effort to stimulate research in this area is under way.
  12. There’s even more we don’t know! Additional areas of research include studying the functions of microbial genes and the effects of gut microbes on medicines. The more we learn from these and other studies, the more we’ll understand how our normal microbiota interacts with us and how to apply that knowledge to promote our health.

Field Focus: Making Chemistry Greener

Bob Lees
NIGMS’ Bob Lees answers questions about green chemistry. Credit: National Institute of General Medical Sciences.

Chemists funded by NIGMS are working to develop “greener” processes for discovering, developing and manufacturing medicines and other molecules with therapeutic potential, as well as compounds used in biomedical research. One of our scientific experts, organic chemist Bob Lees, recently spoke to me about some of these efforts.

What is green chemistry?

Green chemistry is the design of chemical processes and products that are more environmentally friendly. Among the 12 guiding principles of green chemistry Exit icon are producing less waste, including fewer toxic byproducts; using more sustainable (renewable) or biodegradable materials; and saving energy.

Why is green chemistry important to human health?

Green chemistry benefits our health in more than one way. It’s useful for making medicines and for developing imaging tools and probes that scientists use to study a wide range of medically important biological processes. It also benefits our health—and the planet’s—by producing less waste and consuming less energy.

What are some examples of green chemistry research that NIGMS supports?

One researcher developed a method to safely and efficiently use oxygen instead of hazardous chemicals in a step commonly used to make medicines. He also devised a way to make water the only byproduct of those reactions.

Another investigator conceived a better and more cost-effective method for producing a leading statin drug for treating high cholesterol. The traditional, multistep process for making this drug was inefficient and used large amounts of hazardous reagents. The new method uses an engineered enzyme to circumvent several chemical steps. (Enzymes are proteins that speed up chemical reactions in the human body and in other organisms.)

What are some of the scientific challenges and frontiers in green chemistry research?

A key challenge—and a frontier—is improving catalytic reactions. Chemists use catalysts to speed up reactions, but these catalysts are often metals that are toxic as well as rare and expensive. Pharmaceutical manufacturers have to remove metals and other impurities from a drug once the reaction that produced it is complete. It’s important to work on figuring out ways to carry out catalytic reactions with much smaller amounts of metals, or with less toxic metals, as well as with more common metals that are easier to obtain and thus more sustainable. Nonmetallic catalysts also are an option and are an area of much research activity lately.

Hands
Many laboratory reactions produce two, “mirror-image” products: “left-” and “right”-handed versions of a molecule that have the same atoms and atom-to-atom connections but different spatial orientations and more importantly, different biological properties. Scientists are working to develop reactions that yield just one version. Credit: Stock image.

It’s also important to develop catalytic reactions that are more selective, meaning they produce only (or mainly) the compound with the desired properties. Right now, some of these reactions produce two or more chemical compounds that have the same atoms and the same atom-to-atom connections, but with the atoms positioned differently in three-dimensional space, resulting in different biological properties. Creating reactions that are more selective would eliminate the need for additional chemical steps to purify the desired compound from a mixture of products and avoid the waste associated with producing and then removing the undesired compound.

Another area for future work involves adapting enzymes that exist in nature, or even inventing enzymes from scratch, to serve as catalysts for carrying out large-scale chemical reactions cleanly and efficiently. The new process for making a statin drug, described above, is a good example. These large-scale reactions might otherwise require additional chemical steps, each possibly using toxic reagents, polluting solvents and extreme temperatures or pressures that require lots of energy to achieve.

We’re funding scientists across the country who are making progress on various approaches toward environmentally friendly chemical processes.

Cellular ‘Cruise Control’ Systems Let Cells Sense and Adapt to Changing Demands

Cells are the ultimate smart material. They can sense the demands being placed on them during critical life processes and then respond by strengthening, remodeling or self-repairing, for instance. To do this, cells use “mechanosensory” systems similar to the cruise control that lets a car’s engine adjust its power output when going up or down hills.

Researchers are uncovering new details on cells’ molecular cruise control systems. By learning more about the inner workings of these systems, scientists hope ultimately to devise ways to tinker with them for therapeutic purposes.

Cell Fusion

To examine how cells fine-tune their architecture and force output during the merging or fusion of cells, Elizabeth Chen and Douglas Robinson of Johns Hopkins University teamed up with Daniel Fletcher of the University of California, Berkeley. Cell fusion is critical to many developmental and physiological processes, including fertilization, placenta formation, immune response, and skeletal muscle development and regeneration.

Illustration of cell fusion
Fingerlike protrusions of one cell (pink) invade another cell prior to cell fusion. Credit: Shuo Li. Used with permission from Developmental Cell.

Using the fruit fly Drosophila melanogaster as a model system, Chen’s research group Exit icon previously found that when two muscle cells merge during muscle development, fingerlike protrusions of one cell invade the territory of the other cell to promote fusion. In the new study, led by Chen, the researchers showed that cell fusion depends on the ability of the “receiving” cell to put up resistance against the invading cell Exit icon.

In fusing fruit fly cells, the scientists saw that in areas where the invading cells drilled in, the receiving cells quickly stiffened their cell skeletons, effectively pushing back. This mechanosensory response allows the outer membranes of the two cells to be pushed together and later fuse, Chen explains.

The team then explored the mechanisms underlying the stiffening response. They found that a protein called myosin II, which is part of the cell skeleton, senses the pushing force from the invading cell. Myosin II swarms to the fusion site and binds with fibers just beneath the cell membrane to put up the necessary resistance. Continue reading

Digging Deeply Into Data for the Causes of Disease

Hunting for the cause of a disease can be like tracing a river back to its many sources. Myriad factors, large and small, may contribute to a condition. One approach to the search focuses on the massive amounts of genomic and other biological data that scientists are gathering in the course of their studies. To examine this data and look for meaningful patterns and other clues, scientists turn to bioinformatics, a field focused on the development of analytical methods and software tools.

Here are a few examples of how National Institutes of Health-funded scientists are using bioinformatics to dig deeply into data and learn more about the development of diseases, including Huntington’s, preeclampsia and asthma.

Huntington’s Disease

Network of proteins that interact with huntingtin
Researchers have mapped a network of 2,141 proteins that all interact either directly or through one other protein with huntingtin (red), the protein associated with Huntington’s disease. Credit: Cendrine Tourette, Buck Institute for Research on Aging, J Biol Chem 2014 Mar 7;289(10):6709-26 Exit icon.

The cause of Huntington’s disease, a degenerative neurological disorder with no known cure, may appear simple. It begins with a change in a single gene that alters the shape and functioning of the huntingtin protein. But this protein, whether in its normal or altered form, does not act alone. It interacts with other proteins, which in turn interact with others.

A research team led by Robert Hughes of the Buck Institute for Research on Aging set out to understand how this ripple effect contributes to the breakdown in normal cellular function associated with Huntington’s disease. The scientists used experimental and computational approaches to map a network of 2,141 proteins that interact with the huntingtin protein either directly or through one other protein. They found that many of these proteins were involved in cell movement and intercellular communication. Understanding how the huntingtin protein leads to mistakes in these cellular processes could help scientists pursue new approaches to developing treatments. Continue reading

Surprising Role for Protein Involved in Cell Death

C. elegans
Many of the key players in regulating apoptosis were discovered in C. elegans. This tiny roundworm has more than 19,000 genes, and a vast number of them are very similar to genes in other organisms, including people. Credit: Ewa M. Davison.

Our cells come equipped with a self-destruct mechanism that’s activated during apoptosis, a carefully controlled process by which the body rids itself of unneeded or potentially harmful cells. Scientists have long known that a protein called PSR-1 helps clean up the cellular remains. Now they’ve found that PSR-1 also can repair broken nerve fibers.

Ding Xue Exit icon of the University of Colorado, Boulder, and others made the finding in the tiny roundworm C. elegans, which scientists have used to study apoptosis and identify many of the genes that regulate the process. While apoptotic cells sent “eat me” signals to PSR-1, injured nerve cells sent “save me” signals to the protein. These SOS signals helped reconnect the broken nerve fibers, called axons, that would otherwise degenerate after an injury. Continue reading

Meet Karen Carlson

Karen Carlson
Credit: Karen Carlson
Karen Carlson
Fields: Systems biology, bacterial biofilms
Born and raised in: Alaska
Undergraduate student at: The University of Alaska, Anchorage
When not in the lab, she’s: Out and about with her 3-year-old son, friends and family
Secret talent: “I make some really good cookies.”

Karen Carlson got a surprise in her 10th grade biology class. Not only did she find out that she enjoyed science (thanks to an inspiring teacher), but, as she puts it, “I realized that I was really good at it.”

In particular, she says, “I was good at putting all the pieces [of a scientific question] together. And that’s what I had the most fun with—looking at systems: how things fit together and the flow between them.”

These are perfect interests for a budding systems biologist, which is what Carlson is on her way to becoming. She’s a senior in college on track to graduate this year with a bachelor’s degree in biology from the University of Alaska, Anchorage (UAA). Next, she plans to enroll in a master’s degree program at UAA, and eventually to pursue a Ph.D. in a biomedical field. Continue reading

5 Reasons Biologists Love Math

Biologists use math in a variety of ways, from designing experiments to mapping complex biological systems. Credit: Stock image.

On Saturday (at 9:26:53 to be exact), math lovers and others around the world will celebrate Pi—that really long number that represents the ratio of the circumference of a circle to its diameter. I asked our scientific experts why math is important to biomedical research. Here are a few reasons.

  1. Math allows biologists to describe how molecules move in and out of cells, how bacteria shuttle through blood vessels, how drugs get broken down in the body and many other physiological processes.
  2. Studying the geometry, topology and other physical characteristics of DNA, proteins and cellular structures has shed light on their functions and on approaches for enhancing or disrupting those functions.
  3. Math helps scientists design their experiments, including clinical trials, so they result in meaningful data, a.k.a statistical significance.
  4. Scientists use math to piece together all the different parts of a cell, an organ or an entire organism to better understand how the parts interact and how perturbations in these complex systems may contribute to disease.
  5. Sometimes it’s impossible or too difficult to answer a research question through traditional lab experiments, so biologists rely on math to develop models that represent the system they’re studying, whether it’s a metastasizing cancer cell or an emerging infectious disease. These approaches allow scientists to indicate the likelihood of certain outcomes as well as refine the research questions.

Want more? Here’s a video with 10 reasons biologists should know some math.

Scientists Shine Light on What Triggers REM Sleep

Illustration of a brain.
While studying how the brain controls REM sleep, researchers focused on areas abbreviated LDT and PPT in the mouse brainstem. This illustration shows where these two areas are located in the human brain. Credit: Wikimedia Commons. View larger image

Has the “spring forward” time change left you feeling drowsy? While researchers can’t give you back your lost ZZZs, they are unraveling a long-standing mystery about sleep. Their work will advance the scientific understanding of the process and could improve ways to foster natural sleep patterns in people with sleep disorders.

Working at Massachusetts General Hospital and MIT, Christa Van Dort Exit icon, Matthew Wilson Exit icon and Emery Brown Exit icon focused on the stage of sleep known as REM. Our most vivid dreams occur during this period, as do rapid eye movements, for which the state is named. Many scientists also believe REM is crucial for learning and memory.

REM occurs several times throughout the night, interspersed with other sleep states collectively called non-REM sleep. Although REM is clearly necessary—it occurs in all land mammals and birds—researchers don’t really know why. They also don’t understand how the brain turns REM on and off. Continue reading

Simulating the Potential Spread of Measles

Try out FRED Measles:

  1. Go to http://fred.publichealth.
    pitt.edu/measles
    Exit icon
  2. Select “Get Started”
  3. Pick a state and city
  4. Play both simulations

To help the public better understand how measles can spread, a team of infectious disease computer modelers at the University of Pittsburgh has launched a free, mobile-friendly tool that lets users simulate measles outbreaks in cities across the country.

The tool is part of the Pitt team’s Framework for Reconstructing Epidemiological Dynamics, or FRED, that it previously developed to simulate flu epidemics. FRED is based on anonymized U.S. census data that captures demographic and geographic distributions of different communities. It also incorporates details about the simulated disease, such as how contagious it is.

Screenshot of the FRED simulation.
A free, mobile-friendly tool lets users simulate potential measles outbreaks in cities across the country. Credit: University of Pittsburgh Graduate School of Public Health.

Continue reading

Unprecedented Views of HIV

Visualizations can give scientists unprecedented views of complex biological processes. Here’s a look at two new ones that shed light on how HIV enters host cells.

Animation of HIV’s Entry Into Host Cells

Screen shot of the video
This video animation of HIV’s entry into a human immune cell is the first one released in Janet Iwasa’s current project to visualize the virus’ life cycle. As they’re completed, the animations will be posted at http://scienceofhiv.org Exit icon.

We previously introduced you to Janet Iwasa, a molecular animator who’s visualized complex biological processes such as cells ingesting materials and proteins being transported across a cell membrane. She has now released several animations from her current project of visualizing HIV’s life cycle Exit icon. The one featured here shows the virus’ entry into a human immune cell.

“Janet’s animations add great value by helping us consider how complex interactions between viruses and their host cells actually occur in time and space,” says Wes Sundquist, who directs the Center for the Structural Biology of Cellular Host Elements in Egress, Trafficking, and Assembly of HIV Exit icon at the University of Utah. “By showing us how different steps in viral replication must be linked together, the animations suggest hypotheses that hadn’t yet occurred to us.” Continue reading