The world beneath our skin is full of movement. Hemoglobin in our blood grabs oxygen and delivers it throughout the body. Molecular motors in cells chug along tiny tubes, hauling cargo with them. Biological invaders like viruses enter our bodies, hijack our cells and reproduce wildly before bursting out to infect other cells.
To make sense of the subcutaneous world, Janet Iwasa, a molecular animator at the University of Utah, creates “visual hypotheses”—detailed animations that convey the latest thinking of how biological molecules interact.
“It’s really building the animated model that brings insights,” Iwasa told Biomedical Beat in 2014. “When you’re creating an animation, you’re really grappling with a lot of issues that don’t necessarily come up by any other means. In some cases, it might raise more questions, and make people go back and do some more experiments when they realize there might be something missing.”
Iwasa has collaborated with numerous scientists to develop animations of a range of biological processes and structures . Recently, she’s undertaken an ambitious, multi-year project to animate HIV reproduction .