The Meat of the Matter: Learning How Gut Microbiota Might Reduce Harm from Red Meat

Drawing of intestines with a magnifying glass showing bacteria within the intestine.Microbiota in the intestines. Credit: iStock.

Research on how diet impacts the gut microbiota has rapidly expanded in the last several years. Studies show that diets rich in red meat are linked to diseases such as colon cancer and heart disease. In both mice and humans, researchers have recently discovered differences in the gut microbiota of those who eat diets rich in red meat compared with those who don’t. This is likely because of a sugar molecule in the red meat, called N-glycolylneuraminic acid (Neu5Gc), that our bodies can’t break down. Researchers believe the human immune system sees Neu5Gc as foreign. This triggers the immune system, causing inflammation in the body, and possibly leads to disease over time.

Continue reading “The Meat of the Matter: Learning How Gut Microbiota Might Reduce Harm from Red Meat”

Block an Enzyme, Save a Life

Vern Schramm in his lab, dressed in a white lab coat, standing with his arms folded across his chest. Vern Schramm, professor of biochemistry at Albert Einstein College of Medicine, Bronx, New York. Credit: Albert Einstein College of Medicine.

Enzymes drive life. Without them, we couldn’t properly digest food, make brain chemicals, move—or complete myriad other vital tasks. Unfortunately, in certain cases, enzymes also can trigger a host of health problems, including cancer, bacterial infections, and hypertension (high blood pressure).

Understanding how enzymes work has been the research focus of Vern Schramm for more than 4 decades.

“When we started our work, we were driven not by the desire to find drugs, but to understand the nature of enzymes, which are critical to human life,” Schramm says. But his research already led to one drug, and promises many more.

Continue reading “Block an Enzyme, Save a Life”

PECASE Honoree Elizabeth Nance Highlights the Importance of Collaboration in Nanotechnology

Black and white microscopic image of a capillary supplying blood to brain cells. A network of capillaries supplies brain cells with nutrients. Tight seals in their walls keep blood toxins—and many beneficial drugs—out of the brain. Credit: Dan Ferber, PLOS Biol 2007 Jun; (5)6:E169. CC by 2.5 Link to external web site.

The blood-brain barrier—the ultra-tight seal in the walls of the brain’s capillaries—is an important part of the body’s defense system. It keeps invaders and other toxins from entering the human brain by screening out dangerous molecules. But the intricate workings of this extremely effective barrier also make it challenging to design therapeutics that would help us. And as it turns out, getting a drug across the blood-brain barrier is only half the battle. Once it’s across, the drug needs to effectively target the right cells in the brain tissue. With this in mind, it’s no surprise that challenges this complex are solved through collaboration among scientists from several different specialties.

Elizabeth Nance Link to external web site, an assistant professor of chemical engineering at the University of Washington in Seattle and a recent recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE), focuses her research on understanding the barriers in the brain and other cell- and tissue-based barriers in the body to see how nanoparticles interact with them. Her lab uses nanoparticles to package therapies that will treat newborn brain injury, which can occur when the brain loses oxygen and blood flow, often during or immediately prior to delivery. This damage can lead to cerebral palsy, developmental delays, or sometimes death. Early interventions for newborn brain injury can be valuable, but they need to target specific, injured cells without harming healthy ones.

Continue reading “PECASE Honoree Elizabeth Nance Highlights the Importance of Collaboration in Nanotechnology”

Pathways: The Regeneration Issue

Cover of Pathways student magazine showing many zebrafish swimming underwater around grasslike plants, with the featured question: What do you and these zebrafish have in common? Cover of Pathways student magazine.

NIGMS and Scholastic, Inc., are excited to bring you the next edition of Pathways, a collection of free resources that teaches students about basic science, its importance to human health, and exciting research careers.

Pathways is designed for grades 6 through 12. The topic of this unit is regenerative medicine, a field that focuses on restoring or healing damaged body parts so that they function normally. The long-term goal is to stimulate tissue and organs to heal themselves.

Continue readingPathways: The Regeneration Issue”

On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers

A college degree was far from the minds of Joshua and Caleb Marceau growing up on a small farm on the Flathead Indian Reservation in rural northwestern Montana. Their world centered on powwows, tending cattle and chicken, fishing in streams, and working the 20-acre ranch their parents own. Despite their innate love of learning and science, the idea of applying to and paying for college seemed out of reach. Then, opportunities provided through NIGMS, mentors, and scholarships led them from a local tribal college to advanced degrees in biomedical science. Today, both Joshua and Caleb are Ph.D.-level scientists working to improve public health through the study of viruses.

Joshua Discovers Unexpected Opportunities

Joshua Marceau examining a specimen in front of a large centrifuge.Joshua Marceau at Salish Kootenai College, where he gained research experience as an undergraduate. Credit: Joshua Marceau.

As the oldest of four brothers, Joshua was the trailblazer in the family. But like most trailblazers, his path to a scientific career wasn’t always smooth. He attended a reservation school until sixth grade, then was homeschooled. He earned his GED through the local tribal community college, Salish Kootenai College (SKC) in Pablo, so he could begin to take college-level chemistry.

Continue reading “On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers”

Back to School: Top Tips for Undergraduates Eyeing Careers in Biomedical Sciences

Finding a career path in biomedical research can be challenging for many young people, especially when they have no footsteps to follow. We asked three recent college graduates who are pursuing advanced degrees in biomedical sciences to give us their best advice for undergrads.

Tip 1: Talk with mentors and peers, and explore opportunities.

One of the most challenging things for incoming undergraduates is simply to find out about biomedical research opportunities. By talking to professors and peers, students can find ways to explore and develop their interests in biomedical research.

Mariajose Franco in a lab, using a pipette to fill a glass vial.Credit: Mariajose Franco.

Mariajose Franco, a first-generation college student, recently graduated with honors and dual degrees in molecular and cellular biology and physiology from the University of Arizona in Tucson. She’s now in a postbaccalaureate program at the National Cancer Institute and has her eye on combined M.D.-Ph.D. programs.

As an undergraduate, a course in cancer biology piqued her interest, and she reached out to her professor, Justina McEvoy, to see if she could join her lab. As a sophomore, Franco began working on rhabdomyosarcoma, a rare childhood cancer that arises from cells that normally develop into skeletal muscle. Through the NIGMS Maximizing Access to Research Careers (MARC) program, she received support to conduct two research projects during her junior and senior years. In addition to offering research opportunities, the MARC program was instrumental in providing training in scientific writing and conference poster presentations, and navigating applications, Franco says.

Continue reading “Back to School: Top Tips for Undergraduates Eyeing Careers in Biomedical Sciences”

Get Kids Excited About Science: Free STEM Resources

Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. Credit: University of Nebraska, Lincoln.

We have a new Science Education and Partnership Award (SEPA) webpage, featuring free, easy-to-access, SEPA-funded Link to external web site resources that educators nationwide can use to engage their students in science. The SEPA program supports innovative STEM Link to external web site and informal science education Link to external web site  projects for pre-kindergarten through grade 12. The program includes tools that teachers, scientists, and parents can use to excite kids about science and research, such as:

Continue reading “Get Kids Excited About Science: Free STEM Resources”

A Scientist’s Exploration of Regeneration

Viravuth (“Voot”) Yin, standing with arms crossed and smiling in front of a shelves holding tanks of zebrafish in his lab. Viravuth (“Voot”) Yin, associate professor of regenerative biology and medicine at MDI Biological Laboratory and chief scientific officer at Novo Biosciences, Inc., in Bar Harbor, Maine. Credit: MDI Biological Laboratory.

In 1980, a week after his 6th birthday, Viravuth (“Voot”) Yin immigrated with his mother, grandfather, and three siblings from Cambodia to the United States. Everything they owned fit into a single, 18-inch carry-on bag. They had to build new lives from almost nothing. So, it’s perhaps fitting that Yin studies regeneration, the fascinating ability of some animals, such as salamanders, sea stars, and zebrafish, to regrow damaged body parts, essentially from scratch.

Yin’s path wasn’t always smooth. His family settled in Hartford, Connecticut, near an uncle who had been granted asylum during the Vietnam War. Yin got into a lot of trouble in school, trying to learn a new culture and fit in. Things improved when his mother moved him and his siblings to West Hartford, well known for its strong schools.

Continue reading “A Scientist’s Exploration of Regeneration”

Don’t Be Afraid to Search in the Dark: Jon Lorsch Encourages Graduates to Consider New Perspectives

Jon Lorsch, from Swarthmore College’s class of 1990, returned to his alma mater in May to accept an honorary Doctor of Sciences degree for his accomplishments as a biochemist and his visionary leadership of NIGMS. During the university’s 147th commencement, he spoke to the 2019 graduating class, offering advice and examples of how we can look for opportunities in the least likely places.

Watch the 5-minute video to hear Lorsch’s advice to the graduates—and all future scientists—to venture into the unknown in search of the next big advance in biomedical research.

Continue reading “Don’t Be Afraid to Search in the Dark: Jon Lorsch Encourages Graduates to Consider New Perspectives”

Computational Biologist Melissa Wilson on Sex Chromosomes, Gila Monsters, and Career Advice

Melissa Wilson wearing a floral dress and speaking beside a podium during her lecture. Dr. Melissa Wilson.
Credit: Chia-Chi Charlie Chang.

The X and Y chromosomes, also known as sex chromosomes, differ greatly from each other. But in two regions, they are practically identical, said Melissa Wilson Link to external web site, assistant professor of genomics, evolution, and bioinformatics at Arizona State University.

“We’re interested in studying how the process of evolution shaped the X and the Y chromosome in gene content and expression and how that subsequently affects literally everything else that comes with being a human,” she said at the April 10 NIGMS Director’s Early-Career Investigator (ECI) Lecture at NIH.

Continue reading “Computational Biologist Melissa Wilson on Sex Chromosomes, Gila Monsters, and Career Advice”