Tag: Research Organisms

Curiosity-Driven Science: Q&A With Saad Bhamla

0 comments

What do worm blobs and insect pee have to do with human health? We talked to Saad Bhamla, Ph.D., assistant professor of chemical and biomolecular engineering at Georgia Institute of Technology (Georgia Tech) in Atlanta, to find out.

Q: What did your path to becoming a scientist look like?

A portrait shot of Saad Bhamla.
Credit: Rob Felt, Georgia Tech.

A: I grew up in Dubai and did my undergraduate work in India, which is where I was first introduced to science. The science faculty members seemed to be having so much fun and would say things like “for the love of science,” but I couldn’t figure out what joy they were getting until I got a taste of it myself—then I was hooked. I like the idea that you can create a legacy doing science because someone can come along 100 years later and build on your work.

After undergrad, I went to Stanford University and earned my Ph.D. in the lab of Gerald Fuller, Ph.D., and then stayed at Stanford for postdoctoral work (postdoc) in the lab of Manu Prakash, Ph.D. In 2017, I joined the faculty at Georgia Tech. On paper, I’m a chemical engineer, but I describe myself as more of a biophysicist.

Continue reading “Curiosity-Driven Science: Q&A With Saad Bhamla”

Research Organism Superheroes: Tardigrades

0 comments
A brown, barrel-shaped body with rolls, eight legs, pointy claws, and a round mouth against a green background.
A 3D rendering of a tardigrade. Credit: iStock.

“Water bear” or “moss piglet”? No matter what you call them, tardigrades have secured the title of cutest invertebrate—at least in our book. They’re tiny creatures, averaging about the size of a grain of salt, so while you can spot them with the naked eye, using a microscope is the best way to see them. They earned their nickname of water bear and their official name (which comes from tardigradus, Latin for “slow walker”) because of the way they lumber slowly and deliberately on short, stubby legs.

Continue reading “Research Organism Superheroes: Tardigrades”

Slideshow: Breathtaking Brains

0 comments

The average human brain is only about 3 pounds, but this complex organ punches well above its weight, acting as the control center for the whole body. Many of the brain’s intricacies still aren’t fully understood. To gain more insight into brain processes, scientists often peer into the brains of research organisms such as fruit flies and mice. These organisms have shed light on how our brains maintain circadian rhythms, how neuropsychiatric disorders develop, and more.

Continue reading “Slideshow: Breathtaking Brains”

In Other Words: Media—Getting the News and Growing Cells

0 comments

The word media may make many of us think about media outlets where we get our news or social media where we keep up with friends. But to biomedical researchers, media is a nutrient-rich liquid that fuels cell cultures—groups of cells grown in a lab. Scientists grow many types of cultures in media, from bacteria to human cells. They use these cultures to learn about basic biological processes and to develop and test new medicines.

Below the title “Media: In Other Words,” two images are separated by a jagged line. On the left is a hand holding a phone using social media with thumbs up and hearts floating off the screen. On the right is a pipette dispensing media into a Petri dish and a media bottle in the background. Under the images, text reads: “Did you know? In biomedical science, media is a nutrient-rich liquid that fuels cell cultures.”
Credit: NIGMS.
Continue reading “In Other Words: Media—Getting the News and Growing Cells”

Slideshow: Circles of Life

1 comment

Every year on March 14, many people eat pie in honor of Pi Day. Mathematically speaking, pi (π) is the ratio of a circle’s circumference (the distance around the outside) to its diameter (the length from one side of the circle to the other, straight through the center). That means if you divide the circumference of any circle by its diameter, the solution will always be pi, which is roughly 3.14—hence March 14, or 3/14. But pi is an irrational number, which means that the numbers after the decimal point never end. With the help of computers, mathematicians have determined trillions of digits of pi.

To celebrate Pi Day, check out this slideshow of circular microbes, research organisms, and laboratory tools (while you enjoy your pie, of course!). To explore more scientific photos, videos, and illustrations, visit our image and video gallery.

Continue reading “Slideshow: Circles of Life”

A Tale of Tails: How Reptile Regeneration Could Help Humans

1 comment
A profile picture of Dr. Lozito wearing a white lab coat.
Dr. Thomas Lozito. Credit: Chris Shinn for USC Health Advancement Communications.

“I’ve always been interested in science and in lizards. I got my first pet lizard when I was around 4 years old, and it was love at first sight,” says Thomas Lozito, Ph.D., who now studies the creatures as an assistant professor of orthopaedic surgery, stem cell biology, and regenerative medicine at the University of Southern California (USC) in Los Angeles.

During his childhood, Dr. Lozito turned his parents’ house into a “little zoo” of lizards and amphibians. He sneaked lizards into his dorm room as a college student at Johns Hopkins University in Baltimore, Maryland, where he earned his bachelor’s degree in biomedical engineering. While pursuing his Ph.D. in stem cell biology through a joint program between the National Institutes of Health and Cambridge University in England, he bred lizards and frogs and sold them to earn extra money.

Continue reading “A Tale of Tails: How Reptile Regeneration Could Help Humans”

Hunting Disease-Causing Genetic Variants

0 comments
A headshot of Dr. Meisler.
Dr. Miriam Meisler. Credit: University of Michigan Medical School.

“In my lab, we’ve been gene hunters—starting with visible phenotypes, or characteristics, and searching for the responsible genes,” says Miriam Meisler, Ph.D., the Myron Levine Distinguished University Professor at the University of Michigan Medical School in Ann Arbor. During her career, Dr. Meisler has identified the functions of multiple genes and has shown how genetic variants, or mutations, can impact human health.

Becoming a Scientist

Dr. Meisler had a strong interest in science as a child, which she credits to “growing up at the time of Sputnik” and receiving encouragement from her father and excellent science teachers in high school and college. However, when she started her undergraduate studies at Antioch College in Yellow Spring, Ohio, she decided to explore the humanities and social sciences. After 2 years of sociology and anthropology classes, she returned to biomedical science and, at a student swap, symbolically traded her dictionary for a slide rule—a mechanical device used to do calculations that was eventually replaced by the electric calculator.

Continue reading “Hunting Disease-Causing Genetic Variants”

Quiz: What Can Research Organisms Reveal About Health?

0 comments

Scientists often use research organisms to study life. Examples range from simple organisms like bacteria to more complex ones such as mice. NIGMS funds studies of research organisms to understand biological processes that are common to all organisms, including humans. Errors in these fundamental processes can cause disease, and better understanding of these malfunctions can aid in the development of potential treatments.

Research organisms may also reveal novel biological processes that can lead to important scientific or medical technologies. For example, researchers studying interactions between viruses and bacteria made a discovery that led to the CRISPR (clustered regularly interspaced short palindromic repeats) gene-editing system, which was recognized by the 2020 Nobel Prize in chemistry.

Continue reading “Quiz: What Can Research Organisms Reveal About Health?”

Cool Images: Wondrous Worms

0 comments

The tiny roundworm Caenorhabditis elegans is one of the most common research organisms—creatures scientists use to study life. While C. elegans may seem drastically different from humans, it shares many genes and molecular pathways with us. Viewed with a microscope, the worm can also be surprisingly beautiful. Aside from the stunning imagery, these examples from our Image and Video Gallery show how C. elegans helps scientists advance our understanding of living systems and find new ways to improve our health.

Round yellow shapes with smaller blue spots. Three of the yellow shapes are connected by a purple line. Credit: Keir Balla and Emily Troemel, University of California San Diego.

This C. elegans has been infected with microsporidia (purple), parasites closely related to fungi. The yellow shapes are the worm’s gut cells, and the blue dots are nuclei. Some microsporidia can infect people, so studying the parasites in worms could help researchers devise strategies to prevent or treat infections.

Continue reading “Cool Images: Wondrous Worms”

Reusable Disinfectant Developed from Mussel “Glue”

0 comments
A pile of ocean mussels with shiny black shells.Mimicking mussels’ natural “glue” could have multiple benefits.

Many species have developed unique adaptations to help them thrive in their environments, and scientists in a field called biomimicry use these examples as the basis for tools to help humans. Biomimicry researchers have made a wide range of products, from climbing pads modeled after gecko feet to a faster, sharp-nosed bullet train based on the beak of the kingfisher bird. The animal kingdom also provides inspiration for biomedical products. For instance, scientists at Michigan Technological University in Houghton discovered that a natural “glue” produced by mussels has antimicrobial properties and are developing a way to put these properties to use.

Continue reading “Reusable Disinfectant Developed from Mussel “Glue””