Category: Cells

In Other Words: Not All Cultures Are Human

0 comments

The word culture may make you think of a flag, style of clothing, celebration, or some other tradition associated with a particular group of people. But in biomedical science, a culture is a group of cells grown in a lab. Scientists use cultures to learn about basic biological processes and to develop and test new medicines.

Below the title “Culture: In Other Words,” two images are separated by a jagged line. On the left are outlines of faces surrounding a globe of the Earth. On the right is a hand holding a Petri dish with cells growing in it. Under the images, text reads: “Did you know? In biomedical science, a culture is a group of cells grown in a lab.”
Credit: NIGMS.

The Birth of a Culture

Scientists can grow many types of cells as cultures, from bacteria to human cells. To create a culture, a researcher adds cells to a container such as a Petri dish along with a mix of nutrients the cells need to grow and divide. The exact recipe varies depending on the cell type. (Because many lab containers were historically made of glass, researchers sometimes refer to studies that use cultures as in vitro—Latin for “in glass.”) Once the cells multiply and fill their container, researchers split the culture into new containers to produce more.

Continue reading “In Other Words: Not All Cultures Are Human”

Science Snippet: Lipids in the Limelight

0 comments
A large blue oval surrounded by small yellow circles.
Spheres of lipids (yellow) inside a cell. The nucleus is shown in blue. Credit: James Olzmann, University of California, Berkeley.

Have you ever wondered why your cells don’t spill into each other or what keeps your skin separate from your blood? The answer to both is lipids—a diverse group of organic compounds that don’t dissolve in water. They’re one of the four major building blocks of our bodies, along with proteins, carbohydrates, and nucleic acids. Types of lipids include:

  • Fats, necessary for our bodies’ long-term energy storage and insulation. Some essential vitamins are fat soluble, meaning they must be associated with fat molecules to be effectively absorbed.
  • Phospholipids, which make up a large part of cell and organelle membranes.
  • Waxes, which help protect delicate surfaces. For instance, earwax protects the skin of the ear canal.
  • Steroids, including cholesterol, a precursor to many hormones, which helps maintain the fluidity of cell membranes.
Continue reading “Science Snippet: Lipids in the Limelight”

In Other Words: How Cells Express Themselves

0 comments

When you encounter the word expression, you may think of a smile, a grimace, or another look on someone’s face. But when biologists talk about expression, they typically mean the process of gene expression—when the information in a gene directs protein synthesis. Proteins are essential for virtually every process in the human body.

Below the title “Expression: In Other Words,” two images are separated by a jagged line. On the left are several cartoon representations of a man with different facial expressions. On the right is a cartoon depiction of DNA and an arrow pointing to a folded protein. Under the images, text reads: Did you know? When biologists talk about expression, they’re typically referring to gene expression, where the information in a gene directs the building of a protein.
Credit: NIGMS.
Continue reading “In Other Words: How Cells Express Themselves”

Science Snippet: RNA’s Remarkable Roles

2 comments

RNA, though less well known than its cousin DNA, is equally integral to our bodies. RNA molecules are long, usually single-stranded chains of nucleotides. (DNA molecules are also made up of nucleotides but are typically double-stranded.) There are three major types of RNA, which are all involved in protein synthesis:

  • Messenger RNA (mRNA) is complementary to one of the DNA strands of a gene and carries genetic information for protein synthesis to the ribosome—the molecular complex in which proteins are made.
  • Transfer RNA (tRNA) works with mRNA to make sure the right amino acids are inserted into the forming protein.
  • Ribosomal RNA (rRNA), together with proteins, makes up ribosomes and functions to recognize the mRNA and tRNA that are presented to the ribosomal complex.
Continue reading “Science Snippet: RNA’s Remarkable Roles”

Slideshow: Mitosis Masterpieces

1 comment

The intricate process of mitosis—a cell splitting into two identical daughter cells—plays a pivotal role in sustaining life. Many scientists study this process to understand what’s needed for it to progress normally and why it sometimes goes awry, such as in cancer. During their research, the scientists often create eye-catching images and videos, and we showcase some of those visuals here.

Continue reading “Slideshow: Mitosis Masterpieces”

Science Snippet: Get to Know Your Nerve Cells!

2 comments

Nerve cells, also known as neurons, carry information through our bodies using electrical impulses and chemical messengers called neurotransmitters. A nerve cell’s size and shape depend on its role and location, but nearly all nerve cells have three main parts:

  • Dendrites that extend like branches and receive signals
  • A cell body containing the nucleus that holds the genetic material of the cell and controls its actions
  • An axon, a long structure that transmits messages
An illustration of a nerve cell that shows a round cell body with dendrites and a long axon branching away from it.
A typical nerve cell. Credit: iStock.
Continue reading “Science Snippet: Get to Know Your Nerve Cells!”

Photographing the Physics of Cells

0 comments
Dr. Lakadamyali sitting behind a large, complex microscope in a lab.
Dr. Melike Lakadamyali with a microscope. Credit: Courtesy of Dr. Lakadamyali.

“It would be a dream come true if I could look at a cell within a tissue and have a Google Maps view to zoom in until I saw individual molecules,” says Melike Lakadamyali, Ph.D., an associate professor of physiology at the University of Pennsylvania’s Perelman School of Medicine in Philadelphia. Her lab is helping make part of that dream a reality by developing super-resolution microscopy tools that visualize cells at a near-molecular level.

Blending Physics and Biology

Science and math fascinated Dr. Lakadamyali since childhood, and she felt especially drawn to physics because she enjoyed using logic to solve problems. After graduating high school in her native country of Cyprus, she chose to study physics at the University of Texas, Austin. She never gave much thought to applying physics methods to biological
questions—a field known as biophysics—until her third year as an undergraduate, when she gained her first research experience in the lab of Josef Käs, Ph.D.

Continue reading “Photographing the Physics of Cells”

In Other Words: Not All Tissues Are For Runny Noses

3 comments

When most of us hear the word tissue, we think of something we reach for when we have a runny nose. But in biology, a tissue is a group of cells that act together to carry out a specific function.

Below the title “Tissue: In Other Words,” two images are separated by a jagged line. On the left is a box of tissues, and on the right is an image of brain tissue showing individual cells. Under the images, text reads: “Did you know? In biomedical science, tissue refers to a group of cells that act together to carry out a specific function in the body.”
Credit: NIGMS; and Tom Deerinck and Mark Ellisman, NCMIR.

Your body has four basic types of tissues:

  • Muscle tissue provides movement. Types include voluntary muscles, like those in the arms and legs, and involuntary muscles, such as those that move food through the digestive system.
  • Nervous tissue carries messages throughout the body and includes the brain, spinal cord, and nerves.
  • Connective tissue supports other tissues and binds them together. Examples include ligaments, tendons, bones, and fat.
  • Epithelial tissue creates protective barriers and includes the skin and the linings of internal passageways.
Together, these different tissues form organs. For example, the stomach contains all four basic types of tissues.

Continue reading “In Other Words: Not All Tissues Are For Runny Noses”

Career Conversations: Q&A with Structural Biologist Lauren Parker Jackson

0 comments
Dr. Lauren Parker Jackson. Credit: Vanderbilt University.

“A confusing experimental result almost always means you’ve stumbled upon something interesting and maybe even exciting. I think that’s what makes science fun,” says Lauren Parker Jackson, Ph.D., an assistant professor of biological sciences at Vanderbilt University, Nashville, Tennessee. Check out the highlights of our interview with Dr. Jackson to learn how she became a biologist and what she studies in her lab.

Q: What sparked your interest in science?

A: I credit my high school chemistry, physics, and biology teachers with getting me interested in science. They were quirky, they were talented, they were energetic, and they weren’t afraid to push us. As a teenager, I did a lot of science fairs and quiz bowls, where two teams compete to answer academic questions. As a high school junior, I took part in the Governor’s School for the Sciences and Engineering, where I spent a month at the University of Tennessee, Knoxville, studying chemistry in a lab. That exposed me to research for the first time.

Continue reading “Career Conversations: Q&A with Structural Biologist Lauren Parker Jackson”

Science Snippet: The Marvels of Membranes

0 comments

Like skin that covers and protects our bodies, membranes surround and protect cells and organelles. Membranes are semi-fluid barriers composed mainly of lipids and proteins. They provide structure; control the import and export of molecules such as ions, nutrients, and toxins; and support cellular communication.

An illustration of a cell cut in half with gray lines indicating its borders and borders of adjacent cells. The cell contains a variety of round and oblong structures in several colors.
A cross section of a cell with its membrane and adjacent cell membranes outlined in gray. The colorful structures are organelles with membranes. Credit: Judith Stoffer.

The lipids that compose membranes are primarily phospholipids. (Cholesterol is another lipid often present in membranes that helps regulate their stiffness.) Phospholipids have hydrophilic (water-loving) “heads” and hydrophobic (water-fearing) “tails.” Within the human body, a water-loving environment, they line up so that their tails face one another and their heads point outward. In membranes, this alignment makes a bilayer barrier that is two lipid molecules deep.

Continue reading “Science Snippet: The Marvels of Membranes”