Cool Images: A Colorful—and Halloween-Inspired—Collection

Transformations aren’t just for people or pets around Halloween. Scientific images also can look different than you might expect, depending on how they’re photographed. Check out these tricky-looking images and learn more about the science behind them.

A human fibroblast cell dividing. A tan-colored area surrounds the cell that contains two magenta-colored centers. Green dots line the area where the cell is dividing. Credit: Nilay Taneja, Vanderbilt University, and Dylan T. Burnette, Ph.D., Vanderbilt University School of Medicine.

Do you have a hunch about what this image is? Perhaps something to do with dry leaves? It’s a human fibroblast cell undergoing cell division, or cytokinesis, into two daughter cells. Cytokinesis is essential for the growth and development of new cells. And fibroblasts play a big role in wound healing by helping with contraction and closure.

Continue reading “Cool Images: A Colorful—and Halloween-Inspired—Collection”

Cilia: Tiny Cell Structures With Mighty Functions

Black-and-white video of cilia lining a cell wall and waving back and forth. Credit: Zvonimir Dogic, Brandeis University.

Imagine an army of tiny soldiers stationed throughout your body, lining cells from your brain to every major organ system. Rather than standing at attention, this tiny force sweeps back and forth thousands of times a minute. Their synchronized action helps move debris along the ranks to the nearest opening. Other soldiers stand as sentries, detecting changes in your environment, relaying that information to your brain, and boosting your senses of taste, smell, sight, and hearing.

Your brain may be the commander in chief, but these rank-and-file soldiers are made up of microscopic cell structures called cilia (cilium in singular).

Here we describe these tiny but mighty cell structures in action.

Continue reading “Cilia: Tiny Cell Structures With Mighty Functions”

Five Fabulous Fats

Happy Fat Tuesday!

On this day, celebrated in many countries with lavish parties and high-fat foods, we’re recognizing the importance of fats in the body.

You’ve probably heard about different types of fat, such as saturated, trans, monounsaturated, omega-3, and omega-6. But fats aren’t just ingredients in food. Along with similar molecules, they fall under the broad term lipids and serve critical roles in the body. Lipids protect your vital organs. They help cells communicate. They launch chemical reactions needed for growth, immune function, and reproduction. They serve as the building blocks of your sex hormones (estrogen and testosterone).

Here we feature five of the hundreds of lipids that are essential to health.

Continue reading “Five Fabulous Fats”

Interview With a Scientist—Elhanan Borenstein: Metagenomics Systems Biology


Cataloging the human microbiome—the complete collection of bacteria, fungi, archaea, protists, and viruses that live in and on our bodies—is an enormous task. Most estimates put the number of organisms who call us home on par with the number of our own cells. Imagine trying to figure out how the billions of critters influence each other and, ultimately, impact our health. Elhanan Borenstein,Link to external web site a computer scientist-cum-genomicist at the University of Washington, and his team are not only tackling this difficult challenge, they are also trying to obtain a systems-level understanding of the collective effect of all of the genes, proteins, and metabolites produced by the numerous species within the microbiome.

Continue reading “Interview With a Scientist—Elhanan Borenstein: Metagenomics Systems Biology”

Molecular Fireworks: How Microtubules Form Inside Cells

A video depicting red strands of various lengths exploding outward from a focal point at the left. The strands are tipped in neon green.
       Microtubules sprout from one another. Credit: Petry lab, Princeton University.

The red spray pictured here may look like fireworks erupting across the night sky on July 4th, but it’s actually a rare glimpse of tiny protein strands called microtubules sprouting and growing from one another in a lab. Microtubules are the largest of the molecules that form a cell’s skeleton. When a cell divides, microtubules help ensure that each daughter cell has a complete set of genetic information from the parent. They also help organize the cell’s interior and even act as miniature highways for certain proteins to travel along.

As their name suggests, microtubules are hollow tubes made of building blocks called tubulins. Scientists know that a protein called XMAP215 adds tubulin proteins to the ends of microtubules to make them grow, but until recently, the way that a new microtubule starts forming remained a mystery.

Sabine Petry Link to external web site and her colleagues at Princeton University developed a new imaging method for watching microtubules as they develop and found an important clue to the mystery. They adapted a technique called total internal reflection fluorescence (TIRF) microscopy, which lit up only a tiny sliver of a sample from frog egg (Xenopus) tissue. This allowed the scientists to focus clearly on a few of the thousands of microtubules in a normal cell. They could then see what happened when they added certain proteins to the sample.

Continue reading “Molecular Fireworks: How Microtubules Form Inside Cells”

Interview With a Scientist: Andrew Goodman, Separating Causation and Correlation in the Microbiome

You’ve likely heard some variation of the statistic that there are at least as many microbial cells in our body as human cells. You may have also heard that the microscopic bugs that live in our guts, on our skins, and every crevice they can find, collectively referred to as the human microbiome, are implicated in human health. But do these bacteria, fungi, archaea, protists, and viruses cause disease, or are the specific populations of microbes inside us a result of our state of health? That’s the question that drives the research in the lab of Andrew Goodman Link to external web site, associate professor of microbial pathogenesis at Yale University.

Continue reading “Interview With a Scientist: Andrew Goodman, Separating Causation and Correlation in the Microbiome”

CLAMP Helps Lung Cells Pull Together

ALT TEXTCells covered with cilia (red strands) on the surface of frog embryos. Credit: The Mitchell Lab.

The outermost cells that line blood vessels, lungs, and other organs also act like guards, alert and ready to thwart pathogens, toxins, and other invaders that can do us harm. Called epithelial cells, they don’t just lie passively in place. Instead, they communicate with each other and organize their internal structures in a single direction, like a precisely drilled platoon of soldiers lining up together and facing the same way.

Lining up this way is crucial during early development, when tissues and organs are forming and settling into their final positions in the developing body. In fact, failure to line up in the correct way is linked to numerous birth defects. In the lungs, for instance, epithelial cells’ ability to synchronize with one another is important since these cells have special responsibilities such as carrying mucus up and out of lung tissue. When these cells can’t coordinate their functions, disease results.

Some lung epithelial cells are covered in many tiny, hair-like structures called cilia. All the cilia on lung epithelial cells must move uniformly in a tightly choreographed way to be effective in their mucus-clearing job. This is a unique example of a process called planar cell polarity (PCP) that occurs in cells throughout the body. Researchers are seeking to identify the signals cells use to implement PCP. Continue reading “CLAMP Helps Lung Cells Pull Together”

Pericytes: Capillary Guardians in the Brain

ALT TEXT
The long arms of pericytes cells (red) stretch along capillaries (blue) in a mouse brain. Credit: Andy Shih.

Nerve cells, or neurons, in our brains do amazing work, from telling our hearts to beat to storing our memories. But neurons cannot operate alone. Many kinds of cells support and regulate neurons and—like neurons—they can come under attack due to injuries or disorders, such as stroke or Alzheimer’s disease. Learning what jobs these cells do and how they respond to disease may show researchers new ways to treat central nervous system disorders. One type of support cell, the pericyte, plays some key roles in brain health. These cells are readily adaptable, even in adult brains, and can support a variety of functions.

Pericytes help with blood flow to nerve cells in the brain. They lie wrapped all along the huge networks of capillaries—the tiniest blood vessels—that both feed neurons and form the blood-brain barrier, which filters out certain substances from blood to protect the brain. Pericytes have a body that appears as a bump protruding from a capillary surface. Pericytes also have long thin arms that stretch along each capillary like a snake on a tree branch. These arms, called processes, reach almost to where the next pericyte process begins, without overlapping. This creates a pericyte chain that covers nearly the entire capillary network.

Pericytes are critical for blood vessel stability and blood-brain barrier function. They’re also known to die off as a result of trauma and disease. Andy ShihLink to external web site, Andree-Ann Berthiaume, and colleagues at the Medical University of South Carolina in Charleston, set up an imaging technique in mouse brains that allowed them to see what pericytes do under normal conditions as well as how these cells respond when some are damaged.

Continue reading “Pericytes: Capillary Guardians in the Brain”

Optogenetics Sparks New Research Tools

Imagine if scientists could zap a single cell (or group of cells) with a pulse of light that makes the cell move, or even turns on or off the cell’s vital functions.

Scientists are working toward this goal using a technology called optogenetics. This tool draws on the power of light-sensitive molecules, called opsins and cryptochromes, which are naturally occurring molecules found in the cell membranes of a wide variety of species, from microscopic bacteria and algae to plants and humans. These light-reacting molecules change their shape or activity when they sense light, so they can be used to trigger cellular activity, such as turning on or off ion flow into the cell and other regulatory pathways. The ability to induce changes in cells has a broad range of practical applications, from enabling scientists to see how cells function to providing the basis for potential therapeutic applications for blindness, cancer, and epilepsy.

Opsins first gained a foothold in research about a decade ago when scientists began using them to study specific electrical networks in the brain. This research relied on channelrhodopsins, opsins that could be used to control the flow of charged ions into and out of the cell. Normally, when a neuron reaches a certain ion concentration, it is triggered to fire, but neuron firing can be changed by inserting opsins in the membrane. Neuroscientists figured out how to incorporate light-sensitive opsin proteins by inserting the opsin gene into the host’s DNA. The genetically encoded opsin proteins in the neuronal membranes could be turned on or off by shining light into the brain itself, using optical fibers or micro-LEDs, to switch on or off the flow of ions and neuron firing.

Since those early studies in the brain, the optogenetics field has come a long way. But the leap from brain cells to other cells has been challenging. Scientists first needed to find a way to deliver light into tissues deep in the body. And, unlike stationary brain cells, they needed a way to target cells that are on the move (such as immune cells). They also needed to develop a way to study not only cell networks but also individual cells and cell parts. The NIGMS-funded researchers highlighted below are among the scientists working to overcome these obstacles and are using optogenetics in new and inventive ways.

Illustration showing how bridges can be built within a cell using light-reacting molecules
Illustration shows how “bridges” can be built within a cell through the use of light-reacting molecules. The light triggers proteins to line up within the cell, making it easier to shuttle molecules between the membranes of two subcellular organelles. This optogenetic strategy is helping scientists to control cell function with a simple beam of light. Illustration courtesy of Yubin Zhou.

Building Bridges

Yubin ZhouLink to external web site of Texas A&M is using optogenetics to control the way cells communicate and to study immune cell function. In one line of research, Zhou is using light to make it easier for calcium ions to enter cells. The ions carry instructions for the cell and also help tether small cellular structures (called organelles).  Those inter-membrane tethers allow for the movement of  proteins and lipids back and forth across the cell, and are critical for sending chemical messengers to communicate information (see illustration). When this process is disrupted, it can lead to extreme changes in cell function and even cell death. Using this technology to “switch on” normal pathways enables the scientists to better understand how such processes can be disrupted.

Continue reading “Optogenetics Sparks New Research Tools”