Category: Chemistry, Biochemistry and Pharmacology

Scientists Shine Light on What Triggers REM Sleep

1 comment
Illustration of a brain.
While studying how the brain controls REM sleep, researchers focused on areas abbreviated LDT and PPT in the mouse brainstem. This illustration shows where these two areas are located in the human brain. Credit: Wikimedia Commons. View larger image

Has the “spring forward” time change left you feeling drowsy? While researchers can’t give you back your lost ZZZs, they are unraveling a long-standing mystery about sleep. Their work will advance the scientific understanding of the process and could improve ways to foster natural sleep patterns in people with sleep disorders.

Working at Massachusetts General Hospital and MIT, Christa Van Dort, Matthew Wilson, and Emery Brown focused on the stage of sleep known as REM. Our most vivid dreams occur during this period, as do rapid eye movements, for which the state is named. Many scientists also believe REM is crucial for learning and memory.

REM occurs several times throughout the night, interspersed with other sleep states collectively called non-REM sleep. Although REM is clearly necessary—it occurs in all land mammals and birds—researchers don’t really know why. They also don’t understand how the brain turns REM on and off.

Continue reading “Scientists Shine Light on What Triggers REM Sleep”

Zinc’s Role in Healthy Fertilization

0 comments
Screen shot of the video
Fluorescent sensors at the cell surface show zinc-rich packages being released from the egg during fertilization. Credit: Northwestern Visualization.

Whether aiding in early growth and development, ensuring a healthy nervous system or guarding the body from illness, zinc plays an important role in the human body.

Husband-and-wife team, Thomas O’Halloran and Teresa Woodruff, plus other researchers at Northwestern University, evaluated the role that zinc plays in healthy fertilization. The study revealed how mouse eggs gather and release billions of zinc atoms at once in events called zinc sparks. These fluxes in zinc concentration are essential in regulating the biochemical processes that facilitate the egg-to-embryo transition.

The scientists developed a series of techniques to determine the amount and location of zinc atoms during an egg cell’s maturation and fertilization as well as in the following two hours. Special imaging methods allowed the researchers to also visualize the movement of zinc sparks in three dimensions.

Continue reading “Zinc’s Role in Healthy Fertilization”

Remotely and Noninvasively Controlling Genes and Cells in Living Animals

0 comments
Remote control car key.
Researchers are developing a system to remotely control genes or cells in living animals with radio wave technology similar to that used to operate remote control car keys. Credit: Stock image.

One of the items on biomedical researchers’ “to-do” list is devising noninvasive ways to control the activity of specific genes or cells in order to study what those genes or cells do and, ultimately, to treat a range of human diseases and disorders.

A team of scientists recently reported progress on a new, noninvasive system that could remotely and rapidly control biological targets in living animals. The system can be activated remotely using either low-frequency radio waves or a magnetic field. Similar radio wave technology operates automatic garage-door openers and remote control car keys and is used in medicine to control electronic pacemakers noninvasively. Magnetic fields are used to activate sensors in burglar alarm systems and to turn your laptop to hibernate mode when the cover is closed. Continue reading “Remotely and Noninvasively Controlling Genes and Cells in Living Animals”

Meet Maureen L. Mulvihill

1 comment
Maureen L. Mulvihill, Ph.D.
Credit: Actuated Medical, Inc.
Maureen L. Mulvihill, Ph.D.
Fields: Materials science, logistics
Works at: Actuated Medical, Inc., a small company that develops medical devices
Second job (volunteer): Bellefonte YMCA Swim Team Parent Boost Club Treasurer
Best skill: Listening to people
Last thing she does every night: Reads to her 7- and 10-year-old children until “one of us falls asleep”

If you’re a fan of the reality TV show Shark Tank, you tune in to watch aspiring entrepreneurs present their ideas and try to get one of the investors to help develop and market the products. Afterward, you might start to think about what you could invent.

Maureen L. Mulvihill has never watched the show, but she lives it every day. She is co-founder, president and CEO of Actuated Medical, Inc. (AMI), a Pennsylvania-based company that develops specialized medical devices. The devices include a system for unclogging feeding tubes, motors that assist MRI-related procedures and needles that gently draw blood.

AMI’s products rely on the same motion-control technologies that allow a quartz watch to keep time, a microphone to project sound and even a telescope to focus on a distant object in a sky. In general, the devices are portable, affordable and unobtrusive, making them appealing to doctors and patients.

Mulvihill, who’s trained in an area of engineering called materials science, says, “I’m really focused on how to translate technologies into ways that help people.” Continue reading “Meet Maureen L. Mulvihill”

A Bright New Method for Rapidly Screening Cancer Drugs

0 comments
Illustration of red, green and blue fluorescent proteins.
Chemists have devised a new approach to screening cancer drugs that uses gold nanoparticles with red, green and blue outputs provided by fluorescent proteins. Credit: University of Massachusetts Amherst.

Scientists may screen billions of chemical compounds before uncovering the few that effectively treat a disease. But identifying compounds that work is just the first step toward developing a new therapy. Scientists then have to determine exactly how those compounds function.

Different cancer therapies attack cancer cells in distinct ways. For example, some drugs kill cancer cells by causing their outer membranes to rapidly rupture in a process known as necrosis. Others cause more subtle changes to cell membranes, which result in a type of programmed cell death known as apoptosis.

If researchers could distinguish the membrane alterations of chemically treated cancer cells, they could quickly determine how that chemical compound brings about the cells’ death. A new sensor developed by a research team led by Vincent Rotello of the University of Massachusetts Amherst can make these distinctions in minutes.

Continue reading “A Bright New Method for Rapidly Screening Cancer Drugs”

New Streamlined Technique for Processing Biological Samples

0 comments
Illustration of Slug flow microextraction.
Researchers have discovered a faster, easier and more affordable technique for processing biological samples. Credit: Weldon School of Biomedical Engineering, Purdue University.

It’s not unusual for the standard dose of a drug to work well for one person but be less effective for another. One reason for such differences is that individuals can break down drugs at different rates, leading to different concentrations of drugs and of their breakdown products (metabolites) in the bloodstream. A promising new process called slug-flow microextraction could make it faster, easier and more affordable to regularly monitor drug metabolites so that medication dosages could be tailored to each patient’s needs, an approach known as personalized medicine. This technique could also allow researchers to better monitor people’s responses to new drug treatments during clinical trials. Continue reading “New Streamlined Technique for Processing Biological Samples”

Delivering Gene-Editing Proteins to Living Cells

0 comments
Illustration of a DNA strand being cut by a pair of scissors.
Researchers are testing new ways to get gene editing proteins into living cells to potentially modify human genes associated with disease. Credit: Stock image.

Over the last two decades, exciting tools have emerged that allow researchers to cut and paste specific sequences of DNA within living cells, a process called gene editing. These tools, including one adapted from a bacterial defense system called CRISPR, have energized the research community with the possibility of using them to modify human genes associated with disease.

A major barrier to testing medical applications of gene editing has been getting the proteins that do the cutting into the cells of living animals. The main methods used in the laboratory take a roundabout route: Researchers push the DNA templates for making the proteins into cells, and then the cells’ own protein factories produce the editing proteins.

Researchers led by David Liu Exit icon from Harvard University are trying to cut out the middleman, so to speak, by ferrying the editing proteins, not the DNA instructions, directly into cells. In a proof-of-concept study, their system successfully delivered three different types of editing proteins into cells in the inner ears of live mice. Continue reading “Delivering Gene-Editing Proteins to Living Cells”

E. Coli Bacteria as Medical Sensors and Hard Drives?

1 comment
E.Coli
Modified E. coli bacteria can serve as sensors and data storage devices for environmental and medical monitoring. Credit: Centers for Disease Control and Prevention. View larger image

E. coli bacteria help us digest our food, produce vitamin K and have served as a model organism in research for decades. Now, they might one day be harnessed as environmental or medical sensors and long-term data storage devices Exit icon.

MIT researchers Timothy Lu and Fahim Farzadfard modified the DNA of E. coli cells so that the cells could be deployed to detect a signal (for example, a small molecule, a drug or the presence of light) in their surroundings. To create the modified E. coli, the scientists inserted into the bacteria a custom-designed genetic tool.

When exposed to the specified signal, the tool triggers a series of biochemical processes that work together to introduce a single mutation at a specific site in the E. coli’s DNA. This genetic change serves to record exposure to the signal, and it’s passed on to subsequent generations of bacteria, providing a continued record of exposure to the signal. In essence, the modified bacteria act like a hard drive, storing biochemical memory for long periods of time. The memory can be retrieved by sequencing the bacteria or through a number of other laboratory techniques.

Continue reading “E. Coli Bacteria as Medical Sensors and Hard Drives?”

Field Focus: Bringing Biology Into Sharper View with New Microscopy Techniques

0 comments
Composite image of mitochondria in a cell
In this composite image of mitochondria in a cell, the left panel shows a conventional optical microscopy image, the middle panel shows a three-dimensional (3-D) STORM image with color indicating depth, and the right panel shows a cross-section of the 3-D STORM image. Credit: Xiaowei Zhuang laboratory, Howard Hughes Medical Institute, Harvard University. View larger image.

Much as a photographer brings distant objects into focus with a telephoto lens, scientists can now see previously indistinct cellular components as small as a few billionths of a meter (nanometers). By overcoming some of the limitations of conventional optical microscopy, a set of techniques known as super-resolution fluorescence microscopy has changed once-blurry images of the nanoworld into well-resolved portraits of cellular architecture, with details never seen before in biology. Reflecting its importance, super-resolution microscopy was recognized with the 2014 Nobel Prize in chemistry.

Using the new techniques, scientists can observe processes in living cells across space and time and study the movements, interactions and roles of individual molecules. For instance, they can identify and track the proteins that allow a virus to invade a cell or those that enable tumor cells to migrate to distant parts of the body in metastatic cancer. The ability to analyze individual molecules, rather than collections of molecules, allows scientists to answer longstanding questions about cellular mechanisms and behavior, such as how cells move along a surface or how certain proteins interact with DNA to regulate gene activity. Continue reading “Field Focus: Bringing Biology Into Sharper View with New Microscopy Techniques”

Correcting a Cellular Routing Error Could Treat Rare Kidney Disease

0 comments
AGT protein and peroxisomes in untreated and treated cells.
The altered AGT protein (red) and peroxisomes (green) appear in different places in untreated cells (top), but they appear together (shown in yellow) in cells treated with DECA (bottom). Credit: Carla Koehler/Reproduced with permission from Proceedings of the National Academy of Sciences USA. View larger image.

Our cells have organized systems to route newly created proteins to the places where they’re needed to do their jobs. For some people born with a rare and potentially fatal genetic kidney disorder called PH1, a genetically altered form of a particular protein mistakenly ends up in mitochondria instead of in another organelle, the peroxisome. This cellular routing error of the AGT protein results in the harmful buildup of oxalate, which leads to kidney failure and other problems at an early age.

In new work led by UCLA biochemist Carla Koehler Exit icon, researchers used a robotic screening system to identify a compound that interferes with the delivery of proteins to mitochondria. Koehler’s team Exit icon showed that adding a small amount of the compound, known as DECA, to cells grown in the laboratory prevented the altered form of the AGT protein from going to the mitochondria and sent it to the peroxisome. The compound also reduced oxalate levels in a cell model of PH1.

The team’s findings suggest that DECA, which is already approved by the Food and Drug Administration for treating certain bacterial infections, could be a promising candidate for treating children affected by PH1. And, Koehler notes, the screening strategy that she and her team used to identify DECA as a potential therapy may help researchers identify other new therapies for the disorder.

This work was funded in part by NIH under grant R01GM061721.