What Is CRISPR?

0 comments

It might sound like a science fiction author made up genetic engineering, but it’s a real tool researchers use in the laboratory! A gene is a segment of DNA that codes for a protein. The information within a gene directs the building of a protein, block by block, through the process of gene expression. For a variety of reasons, including learning about certain cellular processes, scientists use genetic engineering in the lab to manipulate a cell’s genes and the proteins they encode.

Bacteria, shaped as a cluster of orange spheres with bumpy surfaces, on top of an uneven surface.
Streptococcus bacteria under the microscope. Species in this genus, such as Streptococcus pyogenes, have a CRISPR-based defense system. Credit: NIAID/NIH.

One of the most commonly used genetic engineering techniques is called clustered regularly interspaced short palindromic repeats (CRISPR), named for the odd, repeating sequences that researchers found in bacterial DNA in 1987.

Eventually, researchers discovered that these sequences are part of a bacterial immune system. (Just like humans, bacteria are susceptible to viral infections!) Some bacteria are able to insert short sequences of DNA from viruses that previously infected them into their own genome, allowing them to “remember” and more quickly recognize that virus in the future. If the invader tries to attack again, the bacterium recognizes and kills it by chopping up the part of its DNA that matches the “memory” using a special type of protein, an enzyme called CRISPR-Associated (Cas) protein. Our own immune systems also have the ability to remember pathogens through our adaptive immune response.

Continue reading “What Is CRISPR?”

How Many Ounces Are in a Cup—and Other Measurement Morsels

0 comments
A measuring cup that amounts to 1 cup or converted measurements of 8 ounces, 16 tablespoons, or 240 milliliters. A measuring spoon set showing one spoon that amounts to 1 tablespoon or converted measurements of 1/2 ounce or 3 teaspoons.
Credit: NIGMS.

Do you find yourself frustrated while baking when trying to convert between measuring units, like cups to ounces? First of all, we can help with that one: 1 cup is equal to 8 ounces (oz), 16 tablespoons (Tbsp), 48 teaspoons (tsp), or 240 milliliters (mL).

Based on their names, you can probably guess that people began using the tools they had, like cups, teaspoons, and tablespoons, to measure ingredients in the kitchen. They eventually standardized these units of measure because not all spoons or cups were the same size. So now, instead of a recipe calling for milk that fills half a teacup or enough water to fill a coffee cup, we use the standard measuring cup, tablespoon, and teaspoon. In the research lab, scientists use scales and balances to measure solids—not cups—and a variety of tools to measure liquid, from syringes and pipettes to graduated cylinders and flasks—but never spoons!

Continue reading “How Many Ounces Are in a Cup—and Other Measurement Morsels”

Inventing New Ways to Build Bonds: Q&A With Elias Picazo

1 comment
 A portrait image of Dr. Elias Picazo.
Credit: Courtesy of Dr. Elias Picazo.

“Science has always impacted me, but I didn’t realize how much until I actually became a scientist,” says Elias Picazo, Ph.D., assistant professor of chemistry at the University of Southern California in Los Angeles. We talked to Dr. Picazo about his path to becoming a scientist, some of the challenges he faced along the way, and his research inventing new ways to make chemical bonds.

Get to Know Dr. Picazo

  • Books or movies? Movies
  • Beach or mountains? Mountains
  • Favorite music genre? Pop
  • Rainy or sunny? Sunny
  • Salty or sweet? Sweet
  • Music or podcast? Podcast
  • Washing glassware in the lab or dishes in your kitchen? Glassware
  • Favorite lab tool? Magnetic stirrer
Continue reading “Inventing New Ways to Build Bonds: Q&A With Elias Picazo”

Cells by the Numbers

1 comment
If you like this post, check out our other “By the Numbers” posts!

Cells are the basic unit of life—and the focus of much scientific study. They’re categorized based on whether or not they have a distinct nucleus. Prokaryotic cells, like some bacteria such as blue-green algae, don’t have distinct nuclei. Instead, their nuclear material is spread throughout the cytoplasm. Eukaryotic cells—or cells with nuclei—make up humans, animals, plants, and fungi. Here are just a few of cells’ fascinating facets.

30 Trillion

That’s about how many human cells adults have in their bodies. Males are on the higher side with about 36 trillion cells, while females average about 28 trillion cells.

Continue reading “Cells by the Numbers”

Building the Future of Research: Celebrating Postdocs and Training Programs

0 comments

To celebrate the 2024 National Postdoc Appreciation Week, we’re revisiting some scientists we’ve interviewed on the blog and how their postdoctoral experiences and NIGMS-funded training shaped their careers.

Headshots of the six researchers featured in the blog post.
Top row, left to right: Drs. Ahna Skop, Jeff Mudridge, and Nkrumah Grant. Bottom row, left to right: Drs. Mia Huang, Jesse Hall, and Caroline Palavicino-Maggio. Credit: NIGMS.
Continue reading “Building the Future of Research: Celebrating Postdocs and Training Programs”

Sepsis in the Spotlight

0 comments

Sepsis is a condition that can occur when a person’s immune system responds inappropriately to an insult, such as an infection or injury. This condition occurs unpredictably and can be life threatening. Of the 1.7 million adults in the U.S. who develop sepsis every year, at least 350,000 die as a result.

Learn more about sepsis and the future of sepsis research with this infographic. Click to enlarge. Also available in Spanish. Credit: NIGMS.
Continue reading “Sepsis in the Spotlight”

What Careers Can Biomedical Scientists Have?

0 comments
This post is part of a miniseries on becoming a biomedical scientist. Check out other posts in the series if you missed them!

Many of us enjoy learning about topics like plants, weather, or rocks, but did you know that you can make a career out of your love for science? Scientist is a job title, just like carpenter, firefighter, or lawyer. At NIGMS, we work to get students interested in careers in health science. Read on to learn about some of the different jobs that biomedical scientists do and the level of education they require. (Find more info on the different education paths in our first post of this series.) And who knows, maybe this post will spark your interest in pursuing one of these jobs in the future!

Continue reading “What Careers Can Biomedical Scientists Have?”

Membranes, Malaria, and the Mosaic of Science: Q&A With John Jimah

0 comments
Dr. John Jimah standing in a lab.
Credit: Todd Reichert, Princeton University.

“I think it’s really an exciting time for science. Some people might think that everything out there to be discovered has already been discovered, but that’s far from the truth. There is still much, much more to discover,” says John Jimah, Ph.D., an assistant professor of molecular biology at Princeton University in Princeton, New Jersey. We talked with him about how he moved internationally to pursue his career, how his current research on cell membranes could help treat malaria, and how science holds space for everyone.

Get to Know Dr. Jimah

  • Books or movies? Movies
  • Coffee or tea? Mocha
  • Beach or mountains? Beach
  • Cats or dogs? Dogs
  • Music, podcasts, or quiet? Podcasts
  • Early bird or night owl? Early bird
  • Childhood dream job? Judge
  • Favorite hobby? Bicycling
  • Favorite piece of lab safety equipment? Gloves
  • A scientist (past or present) you’d like to meet? Leonardo da Vinci
Continue reading “Membranes, Malaria, and the Mosaic of Science: Q&A With John Jimah”

What Is a Neurotransmitter?

0 comments

Have you wondered what controls the most basic functions of our bodies, like breathing, moving, and sleeping? Chemicals called neurotransmitters play a central role. Neurotransmitters pass messages from one nerve cell to another, and sometimes to muscles or glands. These messages may:

  • Prompt the next nerve cell to pass on the message, prevent the message from going any further, or adjust how the message is passed on
  • Cause a muscle to contract, like our intestines do when they digest food
  • Tell a gland to secrete hormones, which are molecules that further pass on messages to tissues or organs

Continue reading “What Is a Neurotransmitter?”

Science Snippet: The Significance of Symbiotic Relationships

0 comments

Relationships are complicated, even in nature. Two unrelated species living close together and interacting for survival is called symbiosis. There are three types of symbiotic relationships: mutualism, commensalism, and parasitism.

An orange and white striped fish surrounded by many short, pale tentacles of a sea anemone.
A sea anemone sheltering a clownfish. Credit: iStock.

In a mutualistic relationship, both organisms benefit from the interaction. One example is the relationship between honeybees and flowers. Honeybees drink nectar from flowers, collecting and carrying pollen as they fly from one flower to another. Nectar allows bees to make honey, and spreading pollen helps flowers reproduce. Another example of a mutualistic relationship is between clownfish and sea anemones. The sea anemone provides protection and shelter, while clownfish waste provides the sea anemone with nutrients.

Continue reading “Science Snippet: The Significance of Symbiotic Relationships”