Anesthesia is a treatment that prevents patients from feeling pain during procedures like surgery, medical tests, and dental work. Anesthesiologists are doctors who have been specifically trained to give medicines used for anesthesia, which are called anesthetics.
Depending on the procedure they’re having, patients receive different types of anesthesia:
As a medical student, Martin Burke, M.D., Ph.D., helped care for a young college student with cystic fibrosis (CF), an inherited disease that affects the body’s ability to make sweat and mucus. Dr. Burke had just studied CF in class, so he relayed what he had learned to her. He had a lot of information to give—doctors and researchers know the exact amino acid changes in an ionchannel protein called cystic fibrosis transmembrane conductance regulator (CFTR) that cause CF.
“At one point in the conversation, she stopped me and said, ‘It sounds like you know exactly what’s wrong with me, so why can’t you fix it?’” Dr. Burke, now the May and Ving Lee Professor for Chemical Innovation at University of Illinois Urbana-Champaign (UIUC), never forgot this question. In fact, it’s inspired his career-long search for new ways to develop therapies for diseases without effective treatment options.
This post is part of a miniseries on the immune system. Be sure to check out the other posts in this series that you may have missed.
Throughout our immunologyminiseries, we introduced the immune system and its many functions and components. Additionally, we highlighted how vaccines train your immune system, how the system can go awry, and how NIGMS-supported researchers are studying immunology and infectious diseases. Put your knowledge about the immune system to the test by taking the quiz below.
This post is part of a miniseries on the immune system. Be sure to check out the other posts in this series that you may have missed.
Immunology is the study of the immune system, including all the cells, tissues, and organs that work together to protect you from germs. A person who studies immunology is called an immunologist, and there are three types:
Researchers, who study the immune system in the laboratory to understand how it works or how it can go awry and find new treatments for immune system-related diseases
Doctors, who diagnose and care for patients with diseases related to the immune system, such as food allergies or immunodeficiency
Physician-scientists, who are both researchers and doctors and divide their time between the clinic and the laboratory
Nanoparticles may sound like gadgets from a science fiction movie, but they exist in real life. They’re particles of any material that are less than 100 nanometers (one-billionth of a meter) in all dimensions. Nanoparticles appear in nature, and humans have, mostly unknowingly, used them since ancient times. For example, hair dyeing in ancient Egypt involved lead sulfite nanoparticles, and artisans in the Middle Ages added gold and silver nanoparticles to stained-glass windows. Over the past several decades, researchers have studied nanoparticles for their potential uses in many fields, from computer engineering to biology.
A nanoparticle’s properties can differ significantly from those of larger pieces of the same material. Properties that may change include:
Bacteria can cause many common illnesses, including strep throat and ear infections. If you’ve ever gone to the doctor for one of these infections, they likely prescribed an antibiotic—a medicine designed to fight bacteria. Because bacteria can also cause life-threatening infections, antibiotics have saved many lives. However, the widespread use of antibiotics has fueled a growing problem: antibiotic resistance.
Antibiotic-resistant bacteria can survive some or even all antibiotics. Other microorganisms, including fungi, can similarly become resistant to the medicines that are used to treat them. Infections from these microorganisms affect many people and are difficult to treat. According to the Centers for Disease Control and Prevention, in the U.S. alone, resistant bacteria and fungi infect 2.8 million people each year, and more than 35,000 die as a result.
Pharmacologists research how the body acts on medicines (e.g., absorption, excretion) and how medicines act in the body, as well as how these effects vary from person to person. NIGMS-funded pharmacology researchers are:
Conducting research to design medicines with fewer side effects
Exploring how genes cause people to respond differently to medicines
What we put into our bodies can affect how they function and what they do. For example, a sugary snack will probably make you feel differently than a high-protein meal. Similarly, different medicines elicit different responses in your body, and pharmacologists try to fine-tune each medicine to balance the desired (on-target) with the undesired (off-target) effects—a branch of pharmacology called pharmacodynamics.
Most medicines work by binding to a molecular target, usually proteins like receptors or enzymes, and either blocking or supporting its activity, which results in their therapeutic effects.
Have you ever wondered what happens inside your body when you take a medicine? An area of pharmacology called pharmacokinetics is the study of precisely that. Here, we follow a medicine as it enters the body, finds its therapeutic target (also called the active site), and then eventually leaves the body.
To begin, a person takes or is given a dose of medicine by a particular route of administration, such as by mouth (oral); through the skin (topical), mucous membranes (nasal), or lungs (inhaled); or through a needle into a muscle (intramuscular) or into a vein (intravenous). Sometimes medicines can be administered right where they’re needed, like a topical antibiotic ointment on a scrape, but most medicines need to enter the blood to reach their therapeutic target and be effective. Those are the ones we’ll continue following, using the common pharmacokinetic acronym ADME:
Pharmacology is the study of how molecules, such as medicines, interact with the body. Scientists who study pharmacology are called pharmacologists, and they explore the chemical properties, biological effects, and therapeutic uses of medicines and other molecules. Their work can be broken down into two main areas:
Pharmacokinetics is the study of how the body acts on a medicine, including its processes of absorption, distribution, metabolism, and excretion (ADME).
Pharmacodynamics is the study of how a medicine acts in the body—both on its intended target and throughout all the organs and tissues in the body.