Tag: Medicines

Quiz: Do You Know Your Immune System?

0 comments
This post is part of a miniseries on the immune system. Be sure to check out the other posts in this series that you may have missed.
Cartoon microbes with smiley faces forming the shape of a question mark.
Credit: NIGMS.

Throughout our immunology miniseries, we introduced the immune system and its many functions and components. Additionally, we highlighted how vaccines train your immune system, how the system can go awry, and how NIGMS-supported researchers are studying immunology and infectious diseases. Put your knowledge about the immune system to the test by taking the quiz below.

Continue reading “Quiz: Do You Know Your Immune System?”

What Does an Immunologist Do?

0 comments
This post is part of a miniseries on the immune system. Be sure to check out the other posts in this series that you may have missed.

Immunology is the study of the immune system, including all the cells, tissues, and organs that work together to protect you from germs. A person who studies immunology is called an immunologist, and there are three types:

  • Researchers, who study the immune system in the laboratory to understand how it works or how it can go awry and find new treatments for immune system-related diseases
  • Doctors, who diagnose and care for patients with diseases related to the immune system, such as food allergies or immunodeficiency
  • Physician-scientists, who are both researchers and doctors and divide their time between the clinic and the laboratory
Continue reading “What Does an Immunologist Do?”

Science Snippet: Zooming In on Nanoparticles

0 comments
A circle divided into six different, brightly colored slices, each with a different style of nanoparticle. In the center is a gray circle with the word nanoparticles.
Nanoparticles come in many different shapes and configurations. Credit: Adapted from Stevens, et. al., under Creative Commons License 4.0.

Nanoparticles may sound like gadgets from a science fiction movie, but they exist in real life. They’re particles of any material that are less than 100 nanometers (one-billionth of a meter) in all dimensions. Nanoparticles appear in nature, and humans have, mostly unknowingly, used them since ancient times. For example, hair dyeing in ancient Egypt involved lead sulfite nanoparticles, and artisans in the Middle Ages added gold and silver nanoparticles to stained-glass windows. Over the past several decades, researchers have studied nanoparticles for their potential uses in many fields, from computer engineering to biology.

A nanoparticle’s properties can differ significantly from those of larger pieces of the same material. Properties that may change include:

Continue reading “Science Snippet: Zooming In on Nanoparticles”

What Is Antibiotic Resistance?

0 comments
Large clumps of blue, spherical bacteria on a rough, green surface.
Antibiotic resistance is a risk for patients undergoing joint replacement surgery, for example, when the bacteria Staphylococcus aureus group together (blue) and attach to the surface of the implant (green). Credit: Tripti Thapa Gupta, Khushi Patel, and Paul Stoodley, The Ohio State University; Alex Horswill, University of Colorado School of Medicine.

Bacteria can cause many common illnesses, including strep throat and ear infections. If you’ve ever gone to the doctor for one of these infections, they likely prescribed an antibiotic—a medicine designed to fight bacteria. Because bacteria can also cause life-threatening infections, antibiotics have saved many lives. However, the widespread use of antibiotics has fueled a growing problem: antibiotic resistance.

Antibiotic-resistant bacteria can survive some or even all antibiotics. Other microorganisms, including fungi, can similarly become resistant to the medicines that are used to treat them. Infections from these microorganisms affect many people and are difficult to treat. According to the Centers for Disease Control and Prevention, in the U.S. alone, resistant bacteria and fungi infect 2.8 million people each year, and more than 35,000 die as a result.

Continue reading “What Is Antibiotic Resistance?”

Quiz: Do You Know Pharmacology Facts?

0 comments
This is the final post in our miniseries on pharmacology. Check out the others: “What Is Pharmacology?“, “What Happens to Medicine In Your Body?“, and “How Do Medicines Work?
Various pills spilling out of an orange bottle onto a blue background. A quiz question reads: What is pharmacology? Three blank answer options are below.
Credit: NIGMS.

Pharmacologists research how the body acts on medicines (e.g., absorption, excretion) and how medicines act in the body, as well as how these effects vary from person to person. NIGMS-funded pharmacology researchers are:

  • Conducting research to design medicines with fewer side effects
  • Exploring how genes cause people to respond differently to medicines
  • Developing new methods and molecular targets for drug discovery
  • Discovering medicines based on natural products
  • Understanding how medicines act using computers
  • Monitoring brain function under anesthesia to develop safer anesthetic medicines that reduce side effects
  • Creating artificial tissue to heal muscles after traumatic injuries
  • Investigating how to treat patients with sepsis
  • Measuring tissue damage from burns to help improve treatment options
Continue reading “Quiz: Do You Know Pharmacology Facts?”

How Do Medicines Work?

0 comments
A person in a white lab coat and blue gloves touching a screen with a holographic human body and data readouts.
Credit: iStock.

What we put into our bodies can affect how they function and what they do. For example, a sugary snack will probably make you feel differently than a high-protein meal. Similarly, different medicines elicit different responses in your body, and pharmacologists try to fine-tune each medicine to balance the desired (on-target) with the undesired (off-target) effects—a branch of pharmacology called pharmacodynamics.

Most medicines work by binding to a molecular target, usually proteins like receptors or enzymes, and either blocking or supporting its activity, which results in their therapeutic effects.

Continue reading “How Do Medicines Work?”

What Happens to Medicine in Your Body?

1 comment
Cutaway diagram of the human body (head, arms, and torso) showing the blood (arteries in red and veins in blue) and internal organs. Drug delivery is shown by intravenous drip with a blue arrow into the arm, medicine tablet with a black arrow into the mouth, and inhaler with a blue arrow through the mouth into both lungs. The life of the drug in the body is shown by black arrows from mouth to stomach, from stomach to liver, from liver to heart, from blood to kidney, and from liver to intestines.
Medicines administered orally, by inhaler, and intravenously enter the stomach, lungs, and veins, respectively. They’re absorbed, then circulate throughout the body in the blood, are processed by the liver, and excreted by the kidneys and intestines. Credit: NIGMS.

Have you ever wondered what happens inside your body when you take a medicine? An area of pharmacology called pharmacokinetics is the study of precisely that. Here, we follow a medicine as it enters the body, finds its therapeutic target (also called the active site), and then eventually leaves the body.

To begin, a person takes or is given a dose of medicine by a particular route of administration, such as by mouth (oral); through the skin (topical), mucous membranes
(nasal), or lungs (inhaled); or through a needle into a muscle (intramuscular) or into a vein (intravenous). Sometimes medicines can be administered right where they’re needed, like a topical antibiotic ointment on a scrape, but most medicines need to enter the blood to reach their therapeutic target and be effective. Those are the ones we’ll continue following, using the common pharmacokinetic acronym ADME:

Continue reading “What Happens to Medicine in Your Body?”

What Is Pharmacology?

0 comments
A collage of different cartoon images showing scientists working across a spectrum of basic science, chemistry, biology, research, genetics, and medicine, illustrated by images of an EKG readout, test tubes and a pipette, a syringe and medicine bottle, a chemical structure, a microscope, a pill bottle and pill, a data chart, a hospital, a DNA strand, and a human silhouette.
Credit: iStock.

Pharmacology is the study of how molecules, such as medicines, interact with the body. Scientists who study pharmacology are called pharmacologists, and they explore the chemical properties, biological effects, and therapeutic uses of medicines and other molecules. Their work can be broken down into two main areas:

  • Pharmacokinetics is the study of how the body acts on a medicine, including its processes of absorption, distribution, metabolism, and excretion (ADME).
  • Pharmacodynamics is the study of how a medicine acts in the body—both on its intended target and throughout all the organs and tissues in the body.
Continue reading “What Is Pharmacology?”

Using Robots and Artificial Intelligence to Search for New Medicines

0 comments
A portrait image of Dr. Gormley, wearing a white lab coat in the laboratory.
Courtesy of Dr. Adam Gormley.

Adam Gormley, Ph.D., describes himself as a creative and adventurous person—albeit, not creative in the traditional sense. “Science allows me to be creative; to me, it’s a form of art. I love being outdoors, going on sailing trips, and spending time adventuring with my family. Research is the same—it’s an adventure. My creative and adventurous sides have combined into a real love for science,” he says. Dr. Gormley currently channels his passion for science into his position as an assistant professor of biomedical engineering at Rutgers University in Piscataway, New Jersey.

Learning How the World Works

Both of Dr. Gormley’s parents worked in science and medicine—his mother as a medical doctor and his father as a physician-scientist—and they instilled in him a curiosity for how the world worked. When he was young, Dr. Gormley and his parents would tinker with cars or boats and fix broken household items together, all the while talking about the individual parts and how they functioned as a whole. “I always had that technical, hands-on side of me,” he says.

Continue reading “Using Robots and Artificial Intelligence to Search for New Medicines”

Career Conversations: Q&A With Biochemist Prabodhika Mallikaratchy

1 comment
A headshot of Dr. Mallikaratchy.
Credit: CUNY School of Medicine.

“One of the biggest things I hope for in my career is that in 20 years, I still feel the same joy and enthusiasm for research and training that I feel now,” says Prabodhika Mallikaratchy, Ph.D., a professor in the department of molecular, cellular, and biomedical sciences at the City University of New York (CUNY) School of Medicine. Dr. Mallikaratchy talks with us about her career path, research on developing new immunotherapies and molecular tools using nucleic acids, and her belief in the importance of being passionate about your career.

Q: How did you first become interested in science?

A: Growing up in Sri Lanka, I was always a curious child. I remember being drawn to science and math, but there was no particular incident that sparked my interest. By the time I reached high school, though, I had become especially interested in chemistry.

Continue reading “Career Conversations: Q&A With Biochemist Prabodhika Mallikaratchy”