Throughout our immunology miniseries, we introduced the immune system and its many functions and components. Additionally, we highlighted how vaccines train your immune system, how the system can go awry, and how NIGMS-supported researchers are studying immunology and infectious diseases. Put your knowledge about the immune system to the test by taking the quiz below.
Continue reading “Quiz: Do You Know Your Immune System?”Category: Injury and Illness
What Does an Immunologist Do?
Immunology is the study of the immune system, including all the cells, tissues, and organs that work together to protect you from germs. A person who studies immunology is called an immunologist, and there are three types:
- Researchers, who study the immune system in the laboratory to understand how it works or how it can go awry and find new treatments for immune system-related diseases
- Doctors, who diagnose and care for patients with diseases related to the immune system, such as food allergies or immunodeficiency
- Physician-scientists, who are both researchers and doctors and divide their time between the clinic and the laboratory
How Can the Immune System Go Awry?
The immune system is designed to closely monitor the body for signs of intruders that may cause infection. But what happens if it malfunctions? Overactive and underactive immune systems can both have negative effects on your health.
Continue reading “How Can the Immune System Go Awry?”What Is Antibiotic Resistance?
Bacteria can cause many common illnesses, including strep throat and ear infections. If you’ve ever gone to the doctor for one of these infections, they likely prescribed an antibiotic—a medicine designed to fight bacteria. Because bacteria can also cause life-threatening infections, antibiotics have saved many lives. However, the widespread use of antibiotics has fueled a growing problem: antibiotic resistance.
Antibiotic-resistant bacteria can survive some or even all antibiotics. Other microorganisms, including fungi, can similarly become resistant to the medicines that are used to treat them. Infections from these microorganisms affect many people and are difficult to treat. According to the Centers for Disease Control and Prevention, in the U.S. alone, resistant bacteria and fungi infect 2.8 million people each year, and more than 35,000 die as a result.
Continue reading “What Is Antibiotic Resistance?”Quiz: Sepsis Science
At least 1.7 million adults in the United States develop a life-threatening condition called sepsis each year. Sepsis is an overwhelming or impaired whole-body immune response that’s most often caused by bacterial infections. However, it can also be caused by viral infections, such as COVID-19 or influenza; fungal infections; or other injuries, including physical trauma. Anyone can get sepsis, but there’s a higher risk for some people, such as those who are ages 65 and older, who have certain medical conditions, or who have recently experienced severe illness or hospitalization.
The early symptoms of sepsis can include fever, chills, rapid breathing or heart rate, disorientation, and clammy or sweaty skin. Because other conditions also have these symptoms, sepsis can be difficult to diagnose. NIGMS-supported researchers are working to increase our understanding of sepsis so that doctors can identify it more quickly and treat it more effectively.
Continue reading “Quiz: Sepsis Science”Propelling Rare Disease Research for More Than 50 Years
The year 2022 marked 50 years since the creation of the NIGMS Human Genetic Cell Repository (HGCR) at the Coriell Institute for Medical Research in Camden, New Jersey. The NIGMS HGCR consists of cell lines and DNA samples with a focus on those from people with rare, heritable diseases. “Many rare diseases now have treatments because of the samples in the NIGMS HGCR,” says Nahid Turan, Ph.D., Coriell’s chief biobanking officer and co-principal investigator of the NIGMS HGCR. She gives the example of a rare disease advocacy group who worked with the NIGMS HGCR to establish a cell line several decades ago. It was used to identify a gene associated with the disease, which aided in the development of five treatments that have received approval from the Food and Drug Administration.
Researchers have also studied NIGMS HGCR’s samples to help advance knowledge of basic biology and genetics, and even to support the development of a vaccine for a deadly virus.
Continue reading “Propelling Rare Disease Research for More Than 50 Years”A Tale of Tails: How Reptile Regeneration Could Help Humans
“I’ve always been interested in science and in lizards. I got my first pet lizard when I was around 4 years old, and it was love at first sight,” says Thomas Lozito, Ph.D., who now studies the creatures as an assistant professor of orthopaedic surgery, stem cell biology, and regenerative medicine at the University of Southern California (USC) in Los Angeles.
During his childhood, Dr. Lozito turned his parents’ house into a “little zoo” of lizards and amphibians. He sneaked lizards into his dorm room as a college student at Johns Hopkins University in Baltimore, Maryland, where he earned his bachelor’s degree in biomedical engineering. While pursuing his Ph.D. in stem cell biology through a joint program between the National Institutes of Health and Cambridge University in England, he bred lizards and frogs and sold them to earn extra money.
Continue reading “A Tale of Tails: How Reptile Regeneration Could Help Humans”Five Outstanding Stories From 2022
Throughout 2022, we shared the stories of dozens of NIGMS-supported researchers, trainees, and programs. We also highlighted new STEM education resources, tested your knowledge with quizzes, showcased extraordinary scientific images, and more. To celebrate the upcoming new year, we’re highlighting five of our most popular posts from 2022. Check out the list below, and let us know in the comments section which of this year’s posts you liked best!
Continue reading “Five Outstanding Stories From 2022”Empowering Biomedical Research in Rural West Virginia
Public health crises often disproportionately impact rural America. Sally L. Hodder, M.D., works to alleviate these disparities, especially regarding the opioid crisis and the COVID-19 pandemic. She’s the director of the West Virginia Clinical and Translational Science Institute (WVCTSI), the associate vice president of clinical and translational research, and a professor of medicine at West Virginia University.
Dr. Hodder’s work is focused in West Virginia, but her results are valuable assets to researchers across the country. Not only does treating chronic diseases in rural populations contribute to the overall understanding of those diseases, but engaging with and involving people in those communities in research makes science more accessible to them. Dr. Hodder says, “When folks participate in the science, when there is good community discussion about the trial designs and the results, then I think those populations may be more trusting of the results.”
Continue reading “Empowering Biomedical Research in Rural West Virginia”Advancing American Indian and Alaska Native Health Through Research, Training, and Engagement
American Indian and Alaska Native (AI/AN) populations have long experienced health disparities such as higher rates of diabetes, certain cancers, and mental health conditions than those of other Americans. One contributing factor in these disparities is underrepresentation of AI/AN populations in biomedical science—as study participants, researchers, and health professionals. Unfamiliarity with health care options and opportunities, coupled with a distrust of biomedical research resulting from unethical studies in the past, have exacerbated this underrepresentation.
NIGMS-supported researchers, including Native scientists, are partnering with AI/AN Tribes to help reduce health disparities by conducting research focused on AI/AN health priorities and building infrastructure that supports research in those communities. They’re also preparing Native students to pursue careers in science and medicine. In this post, you’ll meet four scientists advancing AI/AN health.
Continue reading “Advancing American Indian and Alaska Native Health Through Research, Training, and Engagement”