Category: Chemistry, Biochemistry and Pharmacology

Bryan Dickinson Designs Molecules to Solve Biological Mysteries

0 comments
A portrait image of Dr. Dickinson.
Credit: Courtesy of Dr. Bryan Dickinson.

“Being a researcher gives you the opportunity to have an impact on the world. It’s a privilege to be able to answer questions that can make a difference in people’s lives,” says Bryan Dickinson, Ph.D. He first fell in love with science as an undergraduate student, and now, as a professor of chemical biology at the University of Chicago, Dr. Dickinson still finds excitement in even the most challenging research questions.

Where Chemistry Meets Biology

Dr. Dickinson majored in biochemistry at the University of Maryland (UMD) in College Park, but he didn’t know what it meant to be a researcher until he started working in labs. His experiences in an analytical chemistry lab at the U.S. Food and Drug Administration and then a biophysics lab at UMD helped him realize that research isn’t like science taught in the classroom, with a list of facts to learn. “The reality is that science is a set of guiding principles that we test under different conditions to learn when they apply in the world,” says Dr. Dickinson. He enjoyed the freedom in asking scientific questions and in how research could be like solving a puzzle.

Continue reading “Bryan Dickinson Designs Molecules to Solve Biological Mysteries”

Advancing Endometriosis Research With Caroline Appleyard

0 comments
A headshot of Dr. Appleyard.
Credit: Courtesy of Dr. Caroline B. Appleyard.

The job opening at Ponce Health Sciences University (PHSU) in Ponce, Puerto Rico—home to great coral reefs—seemed like a perfect fit for Caroline B. Appleyard, Ph.D., given that scuba diving was one of her favorite hobbies. She only intended to stay for a short time, but now, more than 25 years later, Dr. Appleyard is a professor of physiology and pharmacology and program director of the NIGMS-funded Graduate Research Training Initiative for Student Enhancement (G-RISE) at PHSU.

An Interest in Inflammation

Growing up in Scotland, Dr. Appleyard was captivated by a children’s show with science demonstrations that helped kids and teens understand the world around them. She enjoyed studying biology and chemistry, and in high school, joined a lab at a local university that studied pharmacology. Her lab project studying the medicine aspirin ultimately solidified her interest in a career in research.

Continue reading “Advancing Endometriosis Research With Caroline Appleyard”

Martin Burke: Replacing Lost Proteins to Treat Disease

0 comments

As a medical student, Martin Burke, M.D., Ph.D., helped care for a young college student with cystic fibrosis (CF), an inherited disease that affects the body’s ability to make sweat and mucus. Dr. Burke had just studied CF in class, so he relayed what he had learned to her. He had a lot of information to give—doctors and researchers know the exact amino acid changes in an ion channel protein called cystic fibrosis transmembrane conductance regulator (CFTR) that cause CF.

A portrait shot of Dr. Martin Burke standing in front of complex machinery.
Credit: UIUC News Bureau, Fred Zwicky.

“At one point in the conversation, she stopped me and said, ‘It sounds like you know exactly what’s wrong with me, so why can’t you fix it?’” Dr. Burke, now the May and Ving Lee Professor for Chemical Innovation at University of Illinois Urbana-Champaign (UIUC), never forgot this question. In fact, it’s inspired his career-long search for new ways to develop therapies for diseases without effective treatment options.

Continue reading “Martin Burke: Replacing Lost Proteins to Treat Disease”

Science Snippet: Examining Enzymes

0 comments
An enzyme shown as a connected complex of colored ribbons and flat sheets.
Structure of a pyruvate kinase, an enzyme that adds a phosphate group to adenosine diphosphate (ADP) to make adenosine triphosphate (ATP). Credit: PDB 7UEH.

Every day, our cells must produce all the various molecules they need to stay alive. But the chemical reactions to create these molecules can’t occur without help—which is where enzymes come in. Enzymes are biological catalysts, meaning they speed up the rate of specific chemical reactions by reducing the amount of energy needed for the reaction to occur. Most enzymes are proteins, but some RNA molecules can also act as enzymes.

Thousands of different enzymes catalyze the vast range of reactions that take place within cells, but each enzyme typically supports one of the following types of tasks:

Continue reading “Science Snippet: Examining Enzymes”

Amie Fornah Sankoh Achieves a Scientific Dream

0 comments
A headshot of Dr. Amie Fornah Sankoh.
Credit: LinkedIn.

“I wanted to give up so many times. Although I tried to remain positive, I never thought I’d be able to finish my Ph.D. But I made it, and I’m extremely proud of myself,” says Amie Fornah Sankoh, Ph.D., a research scientist with Dow Chemical Company who received NIGMS support as a graduate student.

Human and Plant Communication

Dr. Sankoh has loved science and mathematics since she was just a child growing up in Sierra Leone. When she was 3 years old, Dr. Sankoh became deaf from a childhood disease. Math, unlike other subjects, is very visual, which played a part in her interest in it. “Before I learned American Sign Language when I was 15 years old, I could only understand one language: mathematics,” Dr. Sankoh says.

Continue reading “Amie Fornah Sankoh Achieves a Scientific Dream”

Developing Low-Cost Lab Techniques: Q&A With Abraham Badu-Tawiah

0 comments
A headshot of Dr. Abraham Badu-Tawiah.
Credit: Ohio State University.

“I never thought I could make an impact on chemistry and students’ lives. But now, I’m the head of a lab with several Ph.D. and undergraduate students and a postdoctoral researcher; and we’re developing simple, low-cost lab techniques that can be adopted by labs across the world,” says Abraham Badu-Tawiah, Ph.D., the Robert K. Fox Professor of Chemistry at Ohio State University in Columbus. We talked with Dr. Badu-Tawiah about his career progression, research, and advice for students hoping to launch a career in science.

Q: How did you get started on the path to a career in science?

A: In Ghana, where I grew up, education works differently than in the United States. High school students are assigned subjects to study primarily based on their grades, and once assigned a subject, it’s difficult to switch. I was assigned to math, physics, and chemistry, which put me on a path toward being an engineer. I was happy to be studying science, but after the death of my brother, I wanted to study medicine more than engineering.

Continue reading “Developing Low-Cost Lab Techniques: Q&A With Abraham Badu-Tawiah”

What Do Fats Do in the Body?

0 comments

It’s common knowledge that too much cholesterol and other fats can lead to disease and that a healthy diet involves watching how much fatty food we eat. However, our bodies need a certain amount of fat to function—and we can’t make it from scratch.

A colorful, flowerlike structure.
Hepatocytes, like the one shown here, are the most abundant type of cell in the human liver. One important role they play is producing bile, a liquid that aids in digesting fats. Credit: Donna Beer Stolz, University of Pittsburgh.

Triglycerides, cholesterol, and other essential fatty acids—the fats our bodies can’t make on their own—store energy, insulate us, and protect our vital organs. They act as messengers, helping proteins do their jobs. They also start chemical reactions that help control growth, immune function, reproduction, and other aspects of basic metabolism. Fats also help the body stockpile certain nutrients. Vitamins A, D, E, and K, for example, are stored in the liver and in fatty tissues.

The cycle of making, breaking, storing, and using fats is at the core of how all animals, including humans, regulate their energy. An imbalance in any step can result in disease. For instance, having too many triglycerides in our bloodstream raises our risk of clogged arteries, which can lead to heart attack and stroke.

Continue reading “What Do Fats Do in the Body?”

Inspiring the Next Generation of Scientists Through CityLab

0 comments
CityLab logo. The name CityLab written over an outline of a city inside an Erlenmeyer flask.
Credit: CityLab.

“Many of the students we work with don’t have access to a laboratory through their local schools. For them, CityLab is their first exposure to a laboratory environment—these are hugely important moments for these kids,” says Carl Franzblau, Ph.D., the founder of CityLab at Boston University (BU). CityLab was established more than 30 years ago as a science education outreach program for precollege students and teachers through a partnership between the Chobanian & Avedisian School of Medicine and the Wheelock College of Education & Human Development at BU.

“Since our first Science Education Partnership Award (SEPA) grant in 1991, our mission has been to inspire students to consider careers in the biomedical sciences and broaden the opportunities that are available to them,” says Carla Romney, D.Sc., the director of research for CityLab. Continuous SEPA funding since 1991 has allowed CityLab to fulfill its mission and provide students with state-of-the-art biotechnology laboratory facilities and curricula.

Continue reading “Inspiring the Next Generation of Scientists Through CityLab”