Category: Genes

In Other Words: How Cells Express Themselves

0 comments

When you encounter the word expression, you may think of a smile, a grimace, or another look on someone’s face. But when biologists talk about expression, they typically mean the process of gene expression—when the information in a gene directs protein synthesis. Proteins are essential for virtually every process in the human body.

Below the title “Expression: In Other Words,” two images are separated by a jagged line. On the left are several cartoon representations of a man with different facial expressions. On the right is a cartoon depiction of DNA and an arrow pointing to a folded protein. Under the images, text reads: Did you know? When biologists talk about expression, they’re typically referring to gene expression, where the information in a gene directs the building of a protein.
Credit: NIGMS.
Continue reading “In Other Words: How Cells Express Themselves”

Public Alerted to Omicron in New Mexico Through Quick Detection

0 comments
A sphere with spikes on the outside cut open to reveal a long strand.
Genetic material inside a virus. Credit: iStock.

Over the past 2 years, you’ve probably heard a lot about the spread of SARS-CoV-2—the virus that causes COVID-19—and the emergence of variants. The discovery and tracking of these variants is possible thanks to genomic surveillance, a technique that involves sequencing and analyzing the genomes of SARS-CoV-2 virus particles from many COVID-19 patients. Genomic surveillance has not only shed light on how SARS-CoV-2 has evolved and spread, but it has also helped public health officials decide when to introduce measures to help protect people.

In December 2021, the NIGMS-supported SARS-CoV-2 genomic surveillance program at the University of New Mexico Health Science Center (UNM HSC) in Albuquerque detected the first known case of the Omicron variant in the state, which enabled a rapid public health response. The program’s co-leaders, assistant professors Darrell Dinwiddie, Ph.D., and Daryl Domman, Ph.D., were watching on high alert for it to enter New Mexico, and when it did, they were poised to quickly identify it:

Continue reading “Public Alerted to Omicron in New Mexico Through Quick Detection”

In Other Words: Translation Isn’t Only for Languages

0 comments

In everyday use, most people understand translation to mean converting words from one language to another. But when biologists talk about translation, they mean the process of making proteins based on the genetic information encoded in messenger RNA (mRNA). Proteins are essential for virtually every process in our bodies, from transporting oxygen to defending against infection, so translation is vital for keeping us alive and healthy.

Below the title “Translation: In Other Words,” two images are separated by a jagged line. On the left, is a large speech bubble with the word “hello” surrounded by smaller speech bubbles with greetings in other languages, and on the right is a ribosome producing a protein. Under the images, text reads, “Did you know? In biomedical science, translation refers to the process of making proteins based on genetic information encoded in messenger RNA.”
Credit: NIGMS.
Continue reading “In Other Words: Translation Isn’t Only for Languages”

Quiz: Are You a Genetics Genius?

3 comments

Genes are segments of DNA. They contain instructions for building one or more molecules that help the body work. Researchers in the field of genetics study genes and heredity—how certain traits are passed from parents to their offspring through DNA. NIGMS supports many scientists who investigate the genetics of people and research organisms to better understand human health and disease.

Take our quiz below to test how much you know about genetics. For more quizzes and other fun learning tools, visit our activities and multimedia webpage.

Continue reading “Quiz: Are You a Genetics Genius?”

Gone Fishing: Teaching Bioinformatics With Skate DNA

1 comment

As computers have advanced over the past few decades, researchers have been able to work with larger and more complex datasets than ever before. The science of using computers to investigate biological data is called bioinformatics, and it’s helping scientists make important discoveries, such as finding versions of genes that affect a person’s risk for developing various types of cancer. Many scientists believe that almost all biologists will use bioinformatics to some degree in the future.

A cluster of various-sized dots connected by glowing lines.
Bioinformatics software was used to create this representation of a biological network. Credit: Benjamin King, University of Maine.

However, bioinformatics isn’t always included in college biology programs, and many of today’s researchers received their training before bioinformatics was widely taught. To address these gaps, the bioinformatics cores of the five Northeast IDeA Networks of Biomedical Research Excellence (INBREs)—located in Maine, Rhode Island, Delaware, Vermont, and New Hampshire—have worked together to offer basic bioinformatics training to students and researchers. The collaboration started in 2009 with a project where researchers sequenced the genome of a fish called the little skate (Leucoraja erinacea) and used the data to develop trainings.

Continue reading “Gone Fishing: Teaching Bioinformatics With Skate DNA”

An Enlightening Protein

0 comments
A fly glowing green. A fruit fly expressing GFP. Credit: Jay Hirsh, University of Virginia.

During the holiday season, twinkling lights are a common sight. But no matter what time of the year, you can see colorful glows in many biology labs. Scientists have enabled many organisms to light up in the dark—from cells to fruit flies and Mexican salamanders. These glowing organisms help researchers better understand basic cell processes because their DNA has been edited to express molecules such as green fluorescent protein.

Continue reading “An Enlightening Protein”

Q&A With Nobel Laureate and CRISPR Scientist Jennifer Doudna

0 comments
A headshot of Dr. Doudna. Jennifer Doudna, Ph.D. Credit: University of California, Berkeley.

The 2020 Nobel Prize in Chemistry was awarded to Jennifer Doudna, Ph.D., and Emmanuelle Charpentier, Ph.D., for the development of the gene-editing tool CRISPR. Dr. Doudna shared her thoughts on the award and answered questions about CRISPR in a live chat with NIH Director Francis S. Collins, M.D., Ph.D. Here are a few highlights from the interview.

Q: How did you find out that you won the Nobel Prize?

A: It’s a little bit of an embarrassing story. I slept through a very important phone call and finally woke up when a reporter called me. I was just coming out of a deep sleep, and the reporter was asking, “What do you think about the Nobel?” And I said, “I don’t know anything about it. Who won it?” I thought they were asking for comments on somebody else who won it. And she said, “Oh my gosh! You don’t know! You won it!”

Continue reading “Q&A With Nobel Laureate and CRISPR Scientist Jennifer Doudna”

Scientist Interview: Investigating Circadian Rhythms With Michael W. Young

1 comment

Sudden changes to our schedules, like the end of daylight saving time this Sunday or flying across time zones, often leave us feeling off kilter because they disrupt our bodies’ circadian rhythms. Circadian rhythms are physical, mental, and behavioral changes that follow a daily cycle. When these “biological clocks” are disrupted, our bodies eventually readjust. However, some people have conditions that cause their circadian rhythms to be permanently out of sync with their surroundings.

Continue reading “Scientist Interview: Investigating Circadian Rhythms With Michael W. Young”

Explore Our STEM Education Resources for the New School Year

0 comments

If you’re looking for ways to engage students in science this school year, NIGMS offers a range of free resources that can help. All of our STEM materials are online and print-friendly, making them easy to use for remote teaching.

Pathways , developed in collaboration with Scholastic, is aligned with STEM and ELA education standards for grades 6 through 12. Materials include:

  • Student magazines with corresponding teaching guides
  • Related lessons with interactives
  • Videos
  • Vocabulary lists
Cover of Pathways student magazine showing a microscopy image of a fruit fly’s head with bright blue eyes and the featured questions: What is this? And what does it have to do with how you sleep? Cover of Pathways student magazine, third issue.

Available lessons examine basic science careers, regeneration, and circadian rhythms.

Continue reading “Explore Our STEM Education Resources for the New School Year”

How Errors in Divvying Up Chromosomes Lead to Defects in Cells

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

Mitosis is fundamental among all organisms for reproduction, growth, and cell replacement. When a cell divides, it’s vital that the two new daughter cells maintain the same genes as the parent.

In one step of mitosis, chromosomes are segregated into two groups, which will go into the two new daughter cells. But if the chromosomes don’t divide properly, one daughter cell may have too many and the other too few. Having the wrong number of chromosomes, a condition called aneuploidy, can trigger cells to grow out of control.

Illustration of two sets of chromosomes being pulled apart. One pair separates evenly and is labeled normal, but the other doesn’t and is labeled aneuploidy.An illustration of chromosomes being segregated equally and unequally during mitosis. Credit: Deluca Lab, Colorado State University.

How chromosome segregation errors disrupt cell division is an important area of research. Although it’s been studied for decades, new aspects are still being uncovered and much remains unknown. NIGMS-funded scientists are studying different aspects of mitosis and chromosome segregation. Understanding the details can provide vital insight into an essential biological process and may also be the key to developing better drugs for cancer and other diseases.

Continue reading “How Errors in Divvying Up Chromosomes Lead to Defects in Cells”