Category: Molecular Structures

How Do Cells Recycle and Take Out the Trash?

0 comments

Cells rely on garbage and recycling systems to keep their interiors neat and tidy. If it weren’t for these systems, cells could look like microscopic junkyards—and worse, they might not function properly. So constant cleaning is a crucial biological process, and if it goes wrong, accumulated trash can cause serious problems.

Proteasomes: Cellular Garbage Disposals

One of the cell’s trash processors is called the proteasome. It breaks down proteins, the building blocks and mini-machines that make up many cell parts. The barrel-shaped proteasome disassembles damaged or unwanted proteins, breaking them into bits that the cell can reuse to make new proteins. In this way, the proteasome is just as much a recycling plant as it is a garbage disposal.

Continue reading “How Do Cells Recycle and Take Out the Trash?”

Investigating the Inner Workings of Ion Channels With Sudha Chakrapani

0 comments
A headshot of Dr. Chakrapani.
Credit: Courtesy of Dr. Sudha Chakrapani.

“Curiosity was a central theme in my learning process,” says Sudha Chakrapani, Ph.D., a professor and chair of the department of pharmacology at Case Western Reserve University in Cleveland, Ohio. As a high schooler in India, she especially enjoyed her science classes because they fostered her curiosity and allowed her to ask more questions than other subjects did. She was curious about how to use science to solve the challenges she and her community faced, like access to safe drinking water. Seawater surrounded them, so could they find a way to convert it into drinking water?

As part of India’s annual National Teachers’ Day celebration, high school seniors take on the role of educators and teach their younger peers for the day. Dr. Chakrapani loved the experience, and it solidified what she already knew: She wanted to go to college to be a science teacher. After earning her bachelor’s degree, she entered back-to-back master’s programs in biochemistry and biomedical engineering, where she had the opportunity to do hands-on research.

Continue reading “Investigating the Inner Workings of Ion Channels With Sudha Chakrapani”

Membranes, Malaria, and the Mosaic of Science: Q&A With John Jimah

0 comments
Dr. John Jimah standing in a lab.
Credit: Todd Reichert, Princeton University.

“I think it’s really an exciting time for science. Some people might think that everything out there to be discovered has already been discovered, but that’s far from the truth. There is still much, much more to discover,” says John Jimah, Ph.D., an assistant professor of molecular biology at Princeton University in Princeton, New Jersey. We talked with him about how he moved internationally to pursue his career, how his current research on cell membranes could help treat malaria, and how science holds space for everyone.

Get to Know Dr. Jimah

  • Books or movies? Movies
  • Coffee or tea? Mocha
  • Beach or mountains? Beach
  • Cats or dogs? Dogs
  • Music, podcasts, or quiet? Podcasts
  • Early bird or night owl? Early bird
  • Childhood dream job? Judge
  • Favorite hobby? Bicycling
  • Favorite piece of lab safety equipment? Gloves
  • A scientist (past or present) you’d like to meet? Leonardo da Vinci
Continue reading “Membranes, Malaria, and the Mosaic of Science: Q&A With John Jimah”

The Third Product of Cell Division: Q&A With Ahna Skop

0 comments
A headshot of Dr. Ahna Skop.
Credit: Courtesy of Dr. Ahna Skop.

“Throughout my career, I’ve enjoyed studying topics that no one else seems to care about. I always tell people that I like searching through the scientific garbage bin for inspiration,” says Ahna Skop, Ph.D., a professor of genetics at the University of Wisconsin-Madison. We talked with her about the backyard experiment that helped her gain confidence in her scientific abilities, her career-long pursuit to better understand a detail about cell division that others had written off as unimportant, and her desire to build an accessible scientific community.

Q: How did you first become interested in science?

A: Middle school and high school science fairs had a big impact on me. I would develop my ideas, and with the help of my dad, build the experimental setup I needed to answer the scientific question. One of my experiments studied whether ants preferred to eat salt or sugar, so I poured small piles of both all over the backyard and took daily measurements of the height of the piles to figure out which type was shrinking faster. (Spoiler alert for those of you who might try this at home: They liked both but preferred the sugar to the salt.)

Continue reading “The Third Product of Cell Division: Q&A With Ahna Skop”

Motor Proteins and Microscopy: Q&A With Morgan DeSantis

0 comments
A portrait image of Dr. Morgan DeSantis.
Credit: Courtesy of Dr. Morgan DeSantis.

“I remember thinking in my first cellular biology class how impossibly beautiful it is that there are tiny machines in our bodies doing work,” says Morgan DeSantis, Ph.D., an assistant professor of molecular, cellular, and developmental biology at the University of Michigan in Ann Arbor. We talked with Dr. DeSantis about how her career in science almost didn’t happen, how happy she is that it did, and what she’s learning through her research on molecular machines.

Q: How did you become interested in science?

A: I wasn’t remotely interested in science in high school—I was a self-identified artist. I went to the College of Wooster in Ohio with the sole purpose of studying art and doing pottery. But one day during my freshman year, a box with all the pieces I made throughout the year fell, and everything inside broke. It’s hard to describe the emotions I felt that day, but something changed in me, and I realized pottery wasn’t for me. I couldn’t start the projects over, and I didn’t want to drop out and move back home. So, I decided to become a medical doctor.

Continue reading “Motor Proteins and Microscopy: Q&A With Morgan DeSantis”

Cool Images: Radiant in Red

0 comments

Happy Valentine’s Day! In place of red roses, we hope you’ll accept a bouquet of beautiful scientific images featuring rich, red hues. Be sure to click all the way through to see the festive protein flowing through your blood!

For more scientific photos, illustrations, and videos in all the colors of the rainbow, visit our image and video gallery.

Continue reading “Cool Images: Radiant in Red”

Copper Keeps Us Going

0 comments

Copper pipes, copper wires, copper…food? Copper is not only a useful metal for conducting electricity, but it’s also an essential element we need in our bodies for a variety of important activities—from metabolizing iron to pigmenting skin.

A graphic showing copper’s symbol Cu, atomic number 29, and atomic weight 63.546, all connected by lines to illustrations of the Statue of Liberty, a lightning bolt labeled “conductor,” and a crab labeled “blue blood.” New York’s Statue of Liberty is coated in 80 tons of copper, and oxidation causes its green color. Copper is an excellent conductor of electricity. It’s used in wiring, electronics, and lightning conductors. Crustaceans use copper complexes to transport oxygen in their blood, giving it a blue color. Across the bottom is the logo for the Royal Society of Chemistry celebrating IYPT 2019, the Compound Interest logo, and #IYPT2019. Copper is required to keep your body going. Enzymes that use copper are called cuproenzymes, and they catalyze a wide range of reactions, including making neurotransmitters and connective tissue. The element is found on the Statue of Liberty’s covering, in wiring and electronics, and in the blue blood of crustaceans. Credit: Compound Interest CC BY-NC-ND 4.0. Click to enlarge.
Continue reading “Copper Keeps Us Going”

Pump Up the Potassium

0 comments

The element potassium plays a pivotal role in our bodies. It’s found in all our cells, where it regulates their volume and pressure. To do this, our bodies carefully control potassium levels so that the concentration is about 30 times higher inside cells than outside. Potassium works closely with sodium, which regulates the extracellular fluid volume and has a higher concentration outside cells than inside. These concentration differences create an electrochemical gradient, or a membrane potential.

A graphic showing potassium’s symbol K, atomic number 19, and atomic weight 39.098 connected by lines to illustrations of soap, a nerve cell, and a banana. Potassium hydroxide is used to make liquid soaps. Potassium compounds are also used in fertilizers. In humans, potassium ions regulate blood pressure and transmission of nerve impulses. The potassium-40 isotope causes low level radioactivity in bananas and in humans and animals. Across the bottom of the graphic is the logo for the Royal Society of Chemistry celebrating IYPT 2019, the Compound Interest logo, and #IYPT2019. Potassium is the primary regulator of the pressure and volume inside cells, and it’s important for nerve transmission, muscle contraction, and more. Credit: Compound Interest CC BY-NC-ND 4.0. Click to enlarge.
Continue reading “Pump Up the Potassium”

Science Snippet: The Power of Proteins

0 comments

Some might think that protein is only important for weightlifters. In truth, all life relies on the activity of protein molecules. A single human cell contains thousands of different proteins with diverse roles, including:

A dense network of blue, green, yellow, and red weblike structures along a border of a cell.
Actin proteins in a cell’s cytoskeleton. Credit: Xiaowei Zhuang, HHMI, Harvard University, and Nature Publishing Group.
  • Providing structure. Proteins such as actin make up the three-dimensional cytoskeleton that gives cells structure and determines their shapes.
  • Aiding chemical reactions. Many proteins are biological catalysts called enzymes that speed up the rate of chemical reactions by reducing the amount of energy needed for the reactions to proceed. For example, lactase is an enzyme that breaks down lactose, a sugar found in dairy products. Those with lactose intolerance don’t produce enough lactase to digest dairy.
  • Supporting communication. Some proteins act as chemical messengers between cells. For example, cytokines are the protein messengers of the immune system and can increase or decrease the intensity of an immune response.
Continue reading “Science Snippet: The Power of Proteins”