Tag: Drug Resistance

What Is Antibiotic Resistance?

0 comments
Large clumps of blue, spherical bacteria on a rough, green surface.
Antibiotic resistance is a risk for patients undergoing joint replacement surgery, for example, when the bacteria Staphylococcus aureus group together (blue) and attach to the surface of the implant (green). Credit: Tripti Thapa Gupta, Khushi Patel, and Paul Stoodley, The Ohio State University; Alex Horswill, University of Colorado School of Medicine.

Bacteria can cause many common illnesses, including strep throat and ear infections. If you’ve ever gone to the doctor for one of these infections, they likely prescribed an antibiotic—a medicine designed to fight bacteria. Because bacteria can also cause life-threatening infections, antibiotics have saved many lives. However, the widespread use of antibiotics has fueled a growing problem: antibiotic resistance.

Antibiotic-resistant bacteria can survive some or even all antibiotics. Other microorganisms, including fungi, can similarly become resistant to the medicines that are used to treat them. Infections from these microorganisms affect many people and are difficult to treat. According to the Centers for Disease Control and Prevention, in the U.S. alone, resistant bacteria and fungi infect 2.8 million people each year, and more than 35,000 die as a result.

Continue reading “What Is Antibiotic Resistance?”

Career Conversations: Q&A With Bioengineer César de la Fuente

0 comments
Headshot of Dr. de la Fuente.
Dr. César de la Fuente. Credit: Martí E. Berenguer.

“Science provides adventure and excitement every single day. When you’re pushing boundaries, you get to jump into the abyss of new areas. It can be scary, but it’s an incredible opportunity to try to improve our world and people’s lives,” says César de la Fuente, Ph.D., a Presidential Assistant Professor in the Perelman School of Medicine and School of Engineering and Applied Science at the University of Pennsylvania, Philadelphia. Our interview with Dr. de la Fuente highlights his journey of becoming a scientist and his research using artificial intelligence to discover new drugs.

Q: How did you first become interested in science?

A: I’ve always been fascinated by the world around me. I grew up in a town in northwest Spain, right on the Atlantic Ocean. As a kid, I would go to the beach to investigate marine organisms and bring home all sorts of different fish to study. My mom wasn’t too happy about that! We’re all born scientists, but we tend to lose that curiosity as we enter adulthood. The key is to not lose our ability to learn every day.

Continue reading “Career Conversations: Q&A With Bioengineer César de la Fuente”

Pathways: The Superbug Issue

1 comment
Cover of Pathways student magazine showing blueish-green virus particles and text that reads, Stop the Spread of Superbugs (Yes, you can help!). Cover of Pathways student magazine.

NIGMS and Scholastic bring you our latest issue of Pathways, which focuses on superbugs—infectious microbes that can’t be fought off with medicines. Viruses that can’t be prevented with vaccines, such as the common cold, and antibiotic-resistant bacteria both fall into this category.

Pathways, designed for students in grades 6 through 12, is a collection of free resources that teaches students about basic science and its importance to health, as well as exciting research careers.

Continue readingPathways: The Superbug Issue”

On this Darwin Day, Evolutionary Geneticist Dr. Dan Janes Discusses the Scientific Contributions of Charles Darwin

3 comments

This Sunday, February 12, is Darwin Day—an occasion to recognize the scientific contributions of 19th-century naturalist Charles Darwin. In this video (originally posted on Darwin Day 2016), our own evolutionary geneticist, Dan Janes, answers questions about Darwin and the role of evolution in health and biomedicine.

Continue reading “On this Darwin Day, Evolutionary Geneticist Dr. Dan Janes Discusses the Scientific Contributions of Charles Darwin”

The Irresistible Resistome: How Infant Diapers Might Help Combat Antibiotic Resistance (sort of)

5 comments
Gautam Dantas
Credit: Pablo Tsukayama, Ph.D.,
Washington University School of Medicine
Gautam Dantas
Born: Mumbai, India
Most proud of: His family, which brings him joy and pride
Favorite lab tradition: OOFF! Official Optional Formal Fridays, when members of his lab can dress up, eat bread—made in the lab’s own bread machine—and drink beer and wine together at the end of the day
When not in the lab, he: Enjoys home brewing, pickling and canning, and spending time with his wife and children. He also attends musical performances, including those of his wife, who sings in the St. Louis Symphony Chorus
Advice to aspiring scientists: Pursue hobbies, take risks, explore beyond your comfort zone. “You can do a Ph.D., but also have other experiences.” He says his own outside activities refine his focus in the lab, keep him grounded and help him be an empathetic mentor to his students. Plus, he met his wife while singing in the chorus of Macalester College in St. Paul, Minnesota

When I Grow Up…

Gautam Dantas remembers the day in 10th grade when he first wanted to be a scientist. It was the day he had a new biology teacher, a visiting researcher from the U.S. The teacher passionately described his own biochemical studies of how organisms live together in communities. By the end of the class, Dantas had resolved to earn a Ph.D. in biochemistry.

He ended up doing much more—gaining expertise in computational biology, protein design and synthetic biology. He now combines his skills and knowledge in multifaceted research that spans four departments at Washington University in St. Louis. His goal: to better understand and help combat a vital public health threat—drug-resistant bacteria.

“Our motivation is that we are living in the antibiotic era, and antibiotic resistance is getting out of control,” Dantas says. “We have very few new antibiotics we can use, so we’re kind of scrambling [to find new ways to treat bacterial diseases].”

His research focuses on one of the groups most vulnerable to bacterial infections—newborn babies.

According to his lab’s website Exit icon, the research is “at the interface of microbial genomics, ecology, synthetic biology, and systems biology,” and it aims “to understand, harness, and engineer the biochemical processing potential of microbial communities.” They do it by scrounging around in infant diapers.

Antibiotic Angst

Since their introduction in the 1940s, antibiotic drugs have saved countless lives. Simultaneously, they weeded out strains of bacteria easily killed by the drugs, allowing drug-resistant strains to thrive. Every year, at least 2 million people in the U.S. become infected and at least 23,000 die from drug-resistant bacteria, according to the Center for Disease Control and Prevention. Continue reading “The Irresistible Resistome: How Infant Diapers Might Help Combat Antibiotic Resistance (sort of)”

Interview With a Scientist: Laura Kiessling, Carbohydrate Scientist

4 comments

The outside of every cell on Earth—from the cells in your body to single-celled microorganisms—is blanketed with a coat of carbohydrates, or sugar molecules, that extend from the cell surface, branching off and bending as they interface with the extra-cellular space. The specific patterns in which these carbohydrates are arranged serve as an ID code that help cells recognize each other. For example, human liver cells have one pattern, while human red blood cells another. Certain diseases can even alter the pattern of surface carbohydrates, which is one way the body can recognize damaged cells. On foreign cells, including invading bacteria such as Streptococcus pneumoniae, the carbohydrate coat is even more distinct.

Laura Kiessling, a professor of chemistry at the University of Wisconsin, Madison, studies how carbohydrate coats are assembled and how cells use these coats to tell friend from foe. The implications of her research suggest strategies for targeting tumors, fighting diseases of inflammation and, as she discusses in this video, developing new classes of antibiotics.

Newly Identified Cell Wall Construction Workers: A Novel Antibiotic Target?

0 comments
SEDS

A family of proteins abbreviated SEDS (bright, pink) help build bacterial cell walls, so they are a potential target for new antibiotic drugs. Credit: Rudner lab, Harvard Medical School.

Scientists have identified a new family of proteins that, like the targets of penicillin, help bacteria build their cell walls. The finding might reveal a new strategy for treating a range of bacterial diseases.

The protein family is nicknamed SEDS, because its members help control the shape, elongation, division and spore formation of bacterial cells. Now researchers have proof that SEDS proteins also play a role in constructing cell walls. This image shows the movement of a molecular machine that contains a SEDS protein as it constructs hoops of bacterial cell wall material.

Any molecule involved in building or maintaining cell walls is of immediate interest as a possible target for antibiotic drugs. That’s because animals, including humans, don’t have cell walls—we have cell membranes instead. So disabling cell walls, which bacteria need to survive, is a good way to kill bacteria without harming patients.

This strategy has worked for the first antibiotic drug, penicillin (and its many derivatives), for some 75 years. Now, many strains of bacteria have evolved to resist penicillins—and other antibiotics—making the drugs less effective.

According to the Centers for Disease Control and Prevention, drug-resistant strains of bacteria Exit icon infect at least 2 million people, killing more than 20,000 of them in the U.S. every year. Identifying potential new drug targets, like SEDS proteins, is part of a multi-faceted approach to combating drug-resistant bacteria.

Evolution and Health: A Conversation with Evolutionary Geneticist Dr. Dan Janes on the Occasion of Charles Darwin’s Birthday

5 comments

Today, February 12, is Darwin Day—an occasion to recognize the scientific contributions of 19th-century naturalist Charles Darwin. In this video, our own evolutionary geneticist, Dan Janes, answers questions about Darwin and the role of evolution in health and biomedicine.

For more details about evolution and you, check out our articles Evolution and Health and Everyday Evolution.

Designing Drugs That Kill Invasive Fungi Without Harming Humans

0 comments
Top to bottom: Cryptococcus, Candida, Aspergillus, Pneumocystis
Invasive fungal infections kill more than 1 million people worldwide every year. Almost all of these deaths are due to fungi in one of these four groups. Credit: Centers for Disease Control and Prevention.

Invasive fungal infections—the kind that infect the bloodstream, lung and brain—are inordinately deadly. A big part of the problem is the lack of drugs that are both effective against the fungi and nontoxic to humans.

The situation might change in the future though, thanks to the work of a multidisciplinary research team led by chemist Martin Burke at the University of Illinois. For years, the team has focused on an antifungal agent called amphotericin B (AmB for short). Although impressively lethal to fungi, AmB is also notoriously toxic to human cells.

Most recently, the research team chemically modified the drug to create compounds that kill fungi, but don’t disrupt human cells. The scientists explain it all in the latest issue of Nature Chemical Biology.

Invasive fungal infections are so intractable because most antifungal drugs aren’t completely effective. Plus, fungi have a tendency to develop resistance to them. AmB is a notable exception. Isolated 50 years ago from Venezuelan dirt, AmB has evaded resistance and remains highly effective. Unfortunately, it causes side effects so debilitating that some doctors call it “ampho-terrible.” At high doses, it is fatal.

For decades, scientists believed that AmB molecules kill fungal cells by forming membrane-piercing pores, or ion channels, through which the cells’ innards leak out. Last year, Burke’s group overturned this well-established concept using evidence from nuclear magnetic resonance, chemistry and cell-based experiments. The researchers showed that AmB molecules assemble outside cells into lattice-like structures. These structures act as powerful sponges, sucking vital lipid molecules, called ergosterol, right out of the fungal cell membrane, destroying the cell. Continue reading “Designing Drugs That Kill Invasive Fungi Without Harming Humans”

Preventing Sepsis in Half the Time

0 comments
Human digestive system
A new study suggests that an antibiotic regimen half as long as the standard course could be just as effective in treating intra-abdominal infections and preventing sepsis. Credit: Stock image.

When treating infections, the most critical actions are to quash the infection at its site of origin and prevent it from spreading. If allowed to spread to the bloodstream, an infection could result in body-wide inflammation known as sepsis that can cause organ failure and death.

Intra-abdominal infections, most often caused by gut bacteria, can lead to painful inflammation and present a high risk for sepsis. These infections, which include appendicitis, are some of the most common illnesses around the world.

A standard treatment regimen includes surgically removing the original infection and then prescribing antibiotics to keep the infection from coming back and to prevent sepsis. Currently, doctors administer antibiotics until 2 days after the symptoms disappear, for a total of up to 2 weeks.

Like many other researchers, University of Virginia’s Robert Sawyer Exit icon wondered if treating intra-abdominal infections with shorter antibiotic courses could be just as effective as the standard treatment. To find out, he and a team of researchers from around the country designed the Study to Optimize Peritoneal Infection Therapy (STOP-IT). Continue reading “Preventing Sepsis in Half the Time”