Our Complicated Relationship With Viruses

Illustration of Influenza Virus H1N1. Swine Flu.
Nearly 10 percent of the human genome is derived from the genes of viruses. Credit: Stock image.

When viruses infect us, they can embed small chunks of their genetic material in our DNA. Although infrequent, the incorporation of this material into the human genome has been occurring for millions of years. As a result of this ongoing process, viral genetic material comprises nearly 10 percent of the modern human genome. Over time, the vast majority of viral invaders populating our genome have mutated to the point that they no longer lead to active infections. But they are not entirely dormant.

Sometimes, these stowaway sequences of viral genes, called “endogenous retroviruses” (ERVs), can contribute to the onset of diseases such as cancer. They can also make their hosts susceptible to infections from other viruses. However, scientists have identified numerous cases of viral hitchhikers bestowing crucial benefits to their human hosts—from protection against disease to shaping important aspects of human evolution, such as the ability to digest starch.

Protecting Against Disease

Geneticists Cedric Feschotte Exit icon, Edward Chuong Exit icon and Nels Elde Exit icon at the University of Utah have discovered that ERVs lodged in the human genome can jump start the immune system.

For a virus to successfully make copies of itself inside a host cell, it needs molecular tools similar to the ones its host normally uses to translate genes into proteins. As a result, viruses have tools meticulously shaped by evolution to commandeer the protein-producing machinery of human cells. Continue reading

A Bright New Method for Rapidly Screening Cancer Drugs

Illustration of red, green and blue fluorescent proteins.
Chemists have devised a new approach to screening cancer drugs that uses gold nanoparticles with red, green and blue outputs provided by fluorescent proteins. Credit: University of Massachusetts Amherst.

Scientists may screen billions of chemical compounds before uncovering the few that effectively treat a disease. But identifying compounds that work is just the first step toward developing a new therapy. Scientists then have to determine exactly how those compounds function.

Different cancer therapies attack cancer cells in distinct ways. For example, some drugs kill cancer cells by causing their outer membranes to rapidly rupture in a process known as necrosis. Others cause more subtle changes to cell membranes, which result in a type of programmed cell death known as apoptosis.

If researchers could distinguish the membrane alterations of chemically treated cancer cells, they could quickly determine how that chemical compound brings about the cells’ death. A new sensor developed by a research team led by Vincent Rotello Exit icon of the University of Massachusetts Amherst can make these distinctions in minutes. Continue reading

Illuminating Biology

This time of year, lights brighten our homes and add sparkle to our holidays. Year-round, scientists funded by the National Institutes of Health use light to illuminate important biological processes, from the inner workings of cells to the complex activity of the brain. Here’s a look at just a few of the ways new light-based tools have deepened our understanding of living systems and set the stage for future medical advances.

RSV infected cell
A new fluorescent probe shows viral RNA (red) in an RSV-infected cell. Credit: Eric Alonas and Philip Santangelo, Georgia Institute of Technology and Emory University.

Visualizing Viral Activity

What looks like a colorful pattern produced as light enters a kaleidoscope is an image of a cell infected with respiratory syncytial virus (RSV) lit up by a new fluorescent probe called MTRIPS (multiply labeled tetravalent RNA imaging probes).

Although relatively harmless in most children, RSV can lead to bronchitis and pneumonia in others. Philip Santangelo of the Georgia Institute of Technology and Emory University, along with colleagues nationwide, used MTRIPS to gain a closer look at the life cycle of this virus.

Once introduced into RSV-infected cells, MTRIPS latched onto the genetic material of individual viral particles (in the image, red), making them glow. This enabled the researchers to follow the entry, assembly and replication of RSV inside the living cells. Continue reading

Cool Video: How a Microtubule Builds and Deconstructs

A microtubule, part of the cell’s skeleton, builds and deconstructs. Credit: Eva Nogales lab, University of California, Berkeley.

In this animation, tubulin proteins snap into place like Lego blocks to build a microtubule, part of the cell’s skeleton. When construction ends, this long hollow cylinder falls to pieces from its top end. The breakdown is critical for many basic biological processes, including cell division, when rapidly shortening microtubules pull chromosomes into each daughter cell.

Until recently, scientists didn’t know exactly what drove microtubules to fall apart. A research team led by Eva Nogales of the Lawrence Berkeley National Laboratory and the University of California, Berkeley, now has an explanation.

Using high-powered microscopy, the scientists peered into the structure of a microtubule and found how a chemical reaction puts the stacking tubulin proteins under intense strain. The only thing keeping the proteins from springing apart is the pressure from the addition of more tubulin. So when assembly stops, the microtubule deconstructs.

The team also learned that Taxol, a common cancer drug, relieves this tension and allows microtubules to remain intact indefinitely. With microtubules frozen in place, a cancer cell cannot divide and eventually dies.

Because of this research, scientists now better understand both the success behind a common cancer drug and the molecular basis underlying the workings of microtubules.

Learn more:
University of California, Berkeley News Release Exit icon
Nogales Lab Exit icon

Revealing a Key Player in Cancer Metastasis

Invadopodia
A newly designed fluorescent biosensor shows where Rac1, a molecule involved in cancer metastasis, is active in this cell. Warmer colors show greater Rac1 activity. Credit: Yasmin Moshfegh, Albert Einstein College of Medicine.

Most of the more than half-a-million deaths caused by cancer each year in the United States result not from the original tumor but from the spread of cancer to new parts of the body, or metastasis. Cancer cells travel from a primary tumor using invadopodia, foot-like protrusions that break through surrounding connective tissue. Invadopodia are driven by protein filaments that repeatedly grow and disassemble. Exactly what guides this cycle was unclear, but scientists suspected a molecule called Rac1 might be involved. A new tool now sheds light on the details.

Researchers led by Louis Hodgson of Albert Einstein College of Medicine developed a fluorescent biosensor that glows wherever Rac1 is active in a cell, and they used it to study highly invasive breast cancer cells taken from rodents and humans. The scientists observed invadopodia form when Rac1 activity was low and disappear when it was high. They then confirmed their findings when they shut down the gene that encodes Rac1 and saw the invadopodia remain intact indefinitely.

This discovery suggests that targeting Rac1 activity with drugs could stop the spread of cancer cells. But a major hurdle remains: Healthy cells, including those that make up our immune system, also rely on the molecule for normal activity. Researchers must find a way to turn off Rac1 in cancer cells without disrupting its function in the rest of the body.

This work also was funded by NIH’s National Cancer Institute.

Learn more:
Albert Einstein College of Medicine News Release Exit icon
Cell Migration: Right and Wrong Moves Article from Inside Life Science

Two Proteins That Regulate Energy Use Play Key Role in Stem Cell Development

Stem cells. Credit: Julie Mathieu, University of Washington.
The protein HIF1 alpha is beneficial for creating induced pluripotent stem cells (green) from adult human cells. Credit: Julie Mathieu, University of Washington.

Hannele Ruohola-Baker and a team of researchers at the University of Washington recently discovered that two proteins responsible for regulating how cells break down glucose are also essential for stem cell development. The scientists showed that the proteins HIF1 alpha and HIF2 alpha are both required to reprogram adult human cells into pluripotent stem cells, which have the ability to mature into any cell type in the body. Taking a closer look at what each protein does on its own, the researchers found that HIF1 alpha was beneficial for reprogramming throughout the process, whereas HIF2 alpha was required at early stages but was detrimental at later stages of reprogramming. Because the two proteins also play a role in transforming normal cells into cancer cells, the findings could lead to future advances in cancer research.

Learn more:
University of Washington News Release Exit icon
Ruohola-Baker Lab Exit icon
Once Upon a Stem Cell Article from Inside Life Science
Learning About Cancer by Studying Stem Cells Article from Inside Life Science
Sticky Stem Cells Article from Inside Life Science

One Mutation Leads to Another—At Least in Yeast

DNA mutation. Credit: Stock image.
Newly discovered genetic effect in yeast could shed light on carcinogenesis. Credit: Stock image.

Cancer cells typically include many gene mutations, extra or missing genes, or even the wrong number of chromosomes. Scientists know that certain genetic changes lead to ones elsewhere. But they’ve had a chicken-and-egg problem trying to figure out which changes trigger which others—or whether mutations accumulate randomly in tumors.

New research led by J. Marie Hardwick Exit icon of Johns Hopkins University sheds light on the issue. She found that incapacitating a single gene in yeast cells—regardless of which gene it was—spurred mutations in one or two other genes. The process was anything but random: If, say, gene X was knocked out, yeast cells almost always developed a secondary mutation in gene Y. It’s as if knocking out one gene disrupts the genomic balance enough that the cell must alter a different gene to compensate.

Significantly, the secondary mutations—but not the original ones—caused altered yeast cell characteristics, including traits linked to cancer. Also, many of the secondary mutations occurred in genes associated with cancer in humans, further suggesting that these secondary changes might play a role in carcinogenesis.

This new information will help researchers better understand the chain of genetic events that lead to cancer. It might also prompt scientists to reevaluate years of research that attributed changes in cell behavior or appearance to a given gene knockout.

This work also was funded by NIH’s National Institute of Neurological Disorders and Stroke.

Learn more:
Johns Hopkins University News Release Exit icon

Meet Shanta Dhar

Shanta Dhar
Shanta Dhar
Fields: Chemistry and cancer immunotherapy
Works at: University of Georgia, Athens
Born and raised in: Northern India
Studied at: Indian Institute of Science, Bangalore; Johns Hopkins University, Baltimore, Md.; and Massachusetts Institute of Technology, Cambridge, Mass.
To unwind: She hits the gym
Credit: Frankie Wylie, Stylized Portraiture

The human body is, at its most basic level, a giant collection of chemicals. Finding ways to direct the actions of those chemicals can lead to new treatments for human diseases.

Shanta Dhar, an assistant professor of chemistry at the University of Georgia, Athens (UGA), saw this potential when she was exposed to the field of cancer immunotherapy as a postdoctoral researcher at the Massachusetts Institute of Technology. (Broadly, cancer immunotherapy aims to direct the body’s natural immune response to kill cancer cells.) Dhar was fascinated by the idea and has pursued research in this area ever since. “I always wanted to use my chemistry for something that could be useful [in the clinic] down the line,” she said.

A major challenge in the field has been training the body’s immune system—specifically the T cells—to recognize and attack cancer cells. The process of training T cells to go after cancer is rather like training a rescue dog to find a lost person: First, you present the scent, then you command pursuit.

The type of immune cell chiefly responsible for training T cells to search for and destroy cancer is a called a dendritic cell. First, dendritic cells present T cells with the “scent” of cancer (proteins from a cancer cell). Then they activate the T cells using signaling molecules.

Dhar’s Findings

Dhar’s work focuses on creating the perfect trigger for cancer immunotherapy—one that would provide both the scent of cancer for T cells to recognize and a burst of immune signaling to activate the cells.

Using cells grown in the lab, Dhar’s team recently showed that they could kill most breast cancer cells using a new nanotechnology technique, then train T cells to eradicate the remaining cancer cells.

For the initial attack, the researchers used light-activated nanoparticles that target mitochondria in cancer cells. Mitochondria are the organelles that provide cellular energy. Their destruction sets off a signaling cascade that triggers dendritic cells to produce one of the proteins needed to activate T cells.

Because the strategy worked in laboratory cells, Dhar and her colleague Donald Harn of the UGA infectious diseases department are now testing it in a mouse model of breast cancer to see if it is similarly effective in a living organism.

For some reason, the approach works against breast cancer cells but not against cervical cancer cells. So the team is examining the nanoparticle technique to see if they can make it broadly applicable against other cancer types.

Someday, Dhar hopes to translate this work into a personalized cancer vaccine. To create such a vaccine, scientists would remove cancer cells from a patient’s body during surgery. Next, in a laboratory dish, they would train immune cells from the patient to kill the cancer cells, then inject the trained immune cells back into the patient’s body. If the strategy worked, the trained cells would alert and activate T cells to eliminate the cancer.

Meet Emily Scott

Emily Scott
Emily Scott
Field: Biochemistry
Works at: University of Kansas in Lawrence
Favorite hobby: Scuba diving
Likes watching: “Law & Order”
Likes reading: True-life survival stories
Credit: Chuck France, University of Kansas

With an air tank strapped to her back, college student Emily Scott dove to the bottom of the Gulf of Mexico to examine life in an oxygen-starved area called the Dead Zone. The bottom waters had once teemed with red snapper, croaker and shrimp, but to Scott, the region appeared virtually devoid of life. Then, from out of the mud, appeared the long, undulating arms of a brittle star.

As Scott learned, that particular species of brittle star survived in the Dead Zone because it has something many other marine creatures don’t: an oxygen-carrying protein called hemoglobin. This same protein makes our blood red. Key to hemoglobin’s special oxygen-related properties is a small molecular disk called a heme (pronounced HEEM).

Once she saw what it meant to brittle stars, Scott was hooked on heme and proteins that contain it.

Scott’s Findings

Now an associate professor, Scott studies a family of heme proteins called cytochromes P450 (CYP450s). These proteins are enzymes that facilitate many important reactions: They break down cholesterol, help process vitamins and play an important role in flushing foreign chemicals out of our systems.

To better understand CYP450s, Scott uses a combination of two techniques–X-ray crystallography and nuclear magnetic resonance spectroscopy—for capturing the enzymes’ structural and reactive properties.

She hopes to apply her work to design drugs that block certain CYP450 reactions linked with cancer. One target reaction, carried out by CYP2A13, converts a substance in tobacco into two cancer-causing molecules. Another target reaction is carried out by CYP17A1, an enzyme that helps the body produce steroid sex hormones but that, later in life, can fuel the uncontrolled growth of prostate or breast cancer cells.

“I’m fascinated by these proteins and figuring out how they work,” Scott says. “It’s like trying to put together a puzzle—a very addictive puzzle.” Her drive to uncover the unknown and her willingness to apply new techniques have inspired the students in her lab to do the same.

Content adapted from Hooked on Heme, an article in the September 2013 issue of Findings magazine.

New Approach Subtypes Cancers by Shared Genetic Effects

Cancer

Cancer tumors are like snowflakes—no two ever share the same genetic mutations. Their unique characteristics make them difficult to categorize and treat. A new approach proposed by Trey Ideker and his team at the University of California, San Diego, might offer a solution. Their approach, called network-based stratification (NBS), identifies cancer subtypes by how different mutations in different cancer patients affect the same biological networks, such as genetic pathways. As proof of principle, they applied the method to ovarian, uterine and lung cancer data to obtain biological and clinical information about mutation profiles. Such cancer subtyping shows promise in helping to develop more effective, personalized treatments.

Learn more:

University of California, San Diego News Release Exit icon
Ideker Lab Exit icon