Tag: Diseases

Crowdsourcing Science: Using Competition to Drive Creativity

0 comments
Six student researchers sitting around a table and collaborating on a project. Credit: iStock.

Historically, crowdsourcing has played an important role in certain fields of scientific research. Wildlife biologists often rely on members of the public to monitor animal populations. Using backyard telescopes, amateur astronomers provide images and measurements that lead to important discoveries about the universe. And many meteorologists use data collected by citizen scientists to study weather conditions and patterns.

Now, thanks largely to advances in computing, researchers in computational biology and data science are harnessing the power of the masses and making discoveries that provide valuable insights into human health.

Continue reading “Crowdsourcing Science: Using Competition to Drive Creativity”

Block an Enzyme, Save a Life

0 comments
Vern Schramm in his lab, dressed in a white lab coat, standing with his arms folded across his chest. Vern Schramm, professor of biochemistry at Albert Einstein College of Medicine, Bronx, New York. Credit: Albert Einstein College of Medicine.

Enzymes drive life. Without them, we couldn’t properly digest food, make brain chemicals, move—or complete myriad other vital tasks. Unfortunately, in certain cases, enzymes also can trigger a host of health problems, including cancer, bacterial infections, and hypertension (high blood pressure).

Understanding how enzymes work has been the research focus of Vern Schramm for more than 4 decades.

“When we started our work, we were driven not by the desire to find drugs, but to understand the nature of enzymes, which are critical to human life,” Schramm says. But his research already led to one drug, and promises many more.

Continue reading “Block an Enzyme, Save a Life”

PECASE Honoree Elizabeth Nance Highlights the Importance of Collaboration in Nanotechnology

0 comments
Black and white microscopic image of a capillary supplying blood to brain cells. A network of capillaries supplies brain cells with nutrients. Tight seals in their walls keep blood toxins—and many beneficial drugs—out of the brain. Credit: Dan Ferber, PLOS Biol 2007 Jun; (5)6:E169. CC by 2.5 Link to external web site.

The blood-brain barrier—the ultra-tight seal in the walls of the brain’s capillaries—is an important part of the body’s defense system. It keeps invaders and other toxins from entering the human brain by screening out dangerous molecules. But the intricate workings of this extremely effective barrier also make it challenging to design therapeutics that would help us. And as it turns out, getting a drug across the blood-brain barrier is only half the battle. Once it’s across, the drug needs to effectively target the right cells in the brain tissue. With this in mind, it’s no surprise that challenges this complex are solved through collaboration among scientists from several different specialties.

Elizabeth Nance Link to external web site, an assistant professor of chemical engineering at the University of Washington in Seattle and a recent recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE), focuses her research on understanding the barriers in the brain and other cell- and tissue-based barriers in the body to see how nanoparticles interact with them. Her lab uses nanoparticles to package therapies that will treat newborn brain injury, which can occur when the brain loses oxygen and blood flow, often during or immediately prior to delivery. This damage can lead to cerebral palsy, developmental delays, or sometimes death. Early interventions for newborn brain injury can be valuable, but they need to target specific, injured cells without harming healthy ones.

Continue reading “PECASE Honoree Elizabeth Nance Highlights the Importance of Collaboration in Nanotechnology”

Amazing Organisms and the Lessons They Can Teach Us

1 comment

What do you have in common with rodents, birds, and reptiles? A lot more than you might think. These creatures have organs and body systems very similar to our own: a skeleton, digestive tract, brain, nervous system, heart, network of blood vessels, and more. Even so-called “simple” organisms such as insects and worms use essentially the same genetic and molecular pathways we do. Studying these organisms provides a deeper understanding of human biology in health and disease, and makes possible new ways to prevent, diagnose, and treat a wide range of conditions.

Historically, scientists have relied on a few key organisms, including bacteria, fruit flies, rats, and mice, to study the basic life processes that run bodily functions. In recent years, scientists have begun to add other organisms to their toolkits. Many of these newer research organisms are particularly well suited for a specific type of investigation. For example, the small, freshwater zebrafish grows quickly and has transparent embryos and see-through eggs, making it ideal for examining how organs develop. Organisms such as flatworms, salamanders, and sea urchins can regrow whole limbs, suggesting they hold clues about how to improve wound healing and tissue regeneration in humans.

Continue reading “Amazing Organisms and the Lessons They Can Teach Us”

PREP Scholar’s Passion for Understanding Body’s Defenses

1 comment
Photo of Charmaine Nganje, with curly red shoulder-length hair and eyeglasses, smiling..

Charmaine N. Nganje, PREP scholar at Tufts University in Boston.
Credit: Katherine Suarez.

Charmaine N. Nganje

Hometown: Montgomery Village, Maryland

Influential book : The Harry Potter series (not exactly influential, but they’re my favorite)

Favorite movie/TV show: The Pursuit of Happyness/The Flash

Languages: English (and a bit of Patois)

Unusual fact: I’m the biggest Philadelphia Eagles fan from Maryland that you’ll ever meet

Hobbies: Off-peak traveling

Q. Which NIGMS program are you involved with?

A. The Postbaccalaureate Research Education Program (PREP) Link to external web site at the Sackler School of Graduate Biomedical Sciences at Tufts University in Boston.

Continue reading “PREP Scholar’s Passion for Understanding Body’s Defenses”

Five Fabulous Fats

2 comments

Happy Fat Tuesday!

On this day, celebrated in many countries with lavish parties and high-fat foods, we’re recognizing the importance of fats in the body.

You’ve probably heard about different types of fat, such as saturated, trans, monounsaturated, omega-3, and omega-6. But fats aren’t just ingredients in food. Along with similar molecules, they fall under the broad term lipids and serve critical roles in the body. Lipids protect your vital organs. They help cells communicate. They launch chemical reactions needed for growth, immune function, and reproduction. They serve as the building blocks of your sex hormones (estrogen and testosterone).

Here we feature five of the hundreds of lipids that are essential to health.

Continue reading “Five Fabulous Fats”

Computational Geneticist Discusses Genetics of Storytelling at Sundance Film Festival

0 comments

About 10 years ago, University of Utah geneticist Mark Yandell developed a software platform called VAAST (Variant Annotation, Analysis & Search Tool) to identify rare genes. VAAST, which was funded by NHGRI, was instrumental in pinpointing the genetic cause of a mystery disease that killed four boys across two generations in an Ogden, UT family.

NIGMS has been supporting Yandell’s creation of the next generation of his software, called VAAST 2, for the past few years. The new version incorporates models of how genetic sequences are conserved among different species to improve accuracy with which benign genetic sequences can be differentiated from disease-causing variations. These improvements can help identify novel disease-causing genes responsible for both rare and common diseases.

Yandell and his colleagues in the Utah Genome Project recently took part in a panel at the Sundance Film Festival called the “Genetics of Storytelling” to discuss film’s ability to convey the power of science and medicine. Yandell told the audience his story about his efforts to use VAAST to trace the Ogden boys’ genetic variation back to their great-great-great-great-great grandmother.

Continue reading “Computational Geneticist Discusses Genetics of Storytelling at Sundance Film Festival”

Our Complicated Relationship With Viruses

9 comments
Illustration of Influenza Virus H1N1. Swine Flu.
Nearly 10 percent of the human genome is derived from the genes of viruses. Credit: Stock image.

When viruses infect us, they can embed small chunks of their genetic material in our DNA. Although infrequent, the incorporation of this material into the human genome has been occurring for millions of years. As a result of this ongoing process, viral genetic material comprises nearly 10 percent of the modern human genome. Over time, the vast majority of viral invaders populating our genome have mutated to the point that they no longer lead to active infections. But they are not entirely dormant.

Sometimes, these stowaway sequences of viral genes, called “endogenous retroviruses” (ERVs), can contribute to the onset of diseases such as cancer. They can also make their hosts susceptible to infections from other viruses. However, scientists have identified numerous cases of viral hitchhikers bestowing crucial benefits to their human hosts—from protection against disease to shaping important aspects of human evolution, such as the ability to digest starch.

Protecting Against Disease

Geneticists Cedric Feschotte, Edward Chuong and Nels Elde Exit icon at the University of Utah have discovered that ERVs lodged in the human genome can jump start the immune system.

For a virus to successfully make copies of itself inside a host cell, it needs molecular tools similar to the ones its host normally uses to translate genes into proteins. As a result, viruses have tools meticulously shaped by evolution to commandeer the protein-producing machinery of human cells.

Continue reading “Our Complicated Relationship With Viruses”

Ticks, Mice and Microbes—Studying Disease Spread

0 comments
Maria Diuk-Wasser
Credit: Oscar Gonzalez (Diuk-Wasser’s husband)
Maria Diuk-Wasser
Hometown: Buenos Aires, Argentina
Childhood dream job: Veterinarian
Hobbies: Hiking and gardening with her son (age 10) and daughter (age 7)
Favorite music: Salsa
Worksite: Lab at Columbia University and forests in coastal New England

Maria Diuk-Wasser grew up on the 10th floor of an apartment building in the middle of a bustling city. With no forests or meadows nearby, she read book after book about the natural world and surrounded herself with houseplants.

“I yearned for nature,” Diuk-Wasser says. “But my parents couldn’t provide it. They’re city people. They didn’t know anything about hiking or camping.”

These days, Diuk-Wasser still spends a lot of time in a city—she’s a professor at Columbia University in New York, the most populous city in the U.S.—but she also gets plenty of time in the woods. She hikes for hours through coastal New England forests, some of the loveliest in the country, searching for what many consider less-than-lovely inhabitants: mice and ticks. Continue reading “Ticks, Mice and Microbes—Studying Disease Spread”