Tag: Infectious Diseases

COVID-19 Vaccine and Therapeutic Trials ACTIV-ate in West Virginia

0 comments
Hands in medical gloves drawing liquid from a vial into a syringe with a model of SARS-CoV-2 in the background. ACTIV clinical trials will evaluate the safety and efficacy of COVID-19 treatments and vaccines. Credit: iStock.

Since the virus that causes COVID-19, known as SARS-CoV-2, was first reported in late 2019, scientists have launched hundreds of studies on strategies for diagnosis, prevention, and treatment. To prioritize the most promising vaccine and therapeutics candidates, streamline clinical trials, and coordinate regulatory processes, the National Institutes of Health (NIH) and the Foundation for the NIH have established the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) partnership. ACTIV brings together eight government entities, 20 biopharmaceutical companies, and four nonprofit organizations.

The public-private partnership provides infrastructure, subject matter expertise, and funding to efficiently bring the most promising therapeutics and vaccines into clinical trials. Five ACTIV therapeutic trials are underway. NIGMS-supported Institutional Development Award Program Infrastructure for Clinical and Translational Research (IDeA-CTR) networks reach historically underserved areas and populations, which are important participants in such trials.

Continue reading “COVID-19 Vaccine and Therapeutic Trials ACTIV-ate in West Virginia”

Cool Images: Bewitching Bacteria

2 comments

Some bacteria benefit us as part of our microbiome—the vast collection of microorganisms that live in and on our bodies—while others can make us sick. Whether helpful or dangerous, bacteria can appear colorful and striking under a microscope. These photos provide just a small peek into the incredible diversity of these microbes.

A green pattern resembling a flower on a red background. Credit: Liyang Xiong and Lev Tsimring, BioCircuits Institute, UCSD.

This floral pattern emerged when a researcher grew two strains of bacteria—Acinetobacter baylyi (red) and Escherichia coli (green)—together for 2 days in a petri dish. A. baylyi are found in soil and typically don’t pose a threat to humans, although some strains can cause infections. E. coli normally live in the intestines of people and animals. Most strains are harmless, but some can cause food poisoning or other illnesses.

Continue reading “Cool Images: Bewitching Bacteria”

Fight Against COVID-19 Aided by Sepsis Researchers

0 comments
Oblong light-blue structures with red spots in the middle connected to the surface of a sphere. Spike proteins on the surface of a coronavirus. Credit: David Veesler, University of Washington.

Since the start of the COVID-19 pandemic, researchers from many areas of biomedical science have worked together to learn how this new disease affects the human body, how to prevent its spread, and how to treat it. Severe cases of COVID-19 and cases of sepsis share many symptoms. Sepsis is the body’s overactive and extreme response to an infection. It’s unpredictable and can progress rapidly. Without prompt treatment, it can lead to tissue damage, organ failure, and death.

Sepsis has similarities with some cases of COVID-19, most likely because the two conditions trigger the same reactions at the cellular level. Researchers have studied these reactions in sepsis for many years.

“When we look back on 2020 and the speed with which progress was made against COVID-19, two features will stand out,” says John Younger, M.D., a member of the NIGMS Advisory Council who recently co-chaired a working group on advancing sepsis research. “The first is how quickly the biotechnology community came together to develop vaccine candidates. The second, and arguably the most immediately impactful, is how caregivers and clinical researchers were able to rapidly refine the care of COVID-19 patients based on decades of experience with sepsis.”

This post highlights a few of the many sepsis researchers supported by NIGMS who are applying their expertise to COVID-19.

Continue reading “Fight Against COVID-19 Aided by Sepsis Researchers”

Year in Review: Our Top Three Posts of 2020

0 comments

Over the year, we dove into the inner workings of cells, interviewed award-winning researchers supported by NIGMS, shared a cool collection of science-themed backgrounds for video calls, and more. Here, we highlight three of the most popular posts from 2020. Tell us which of this year’s posts you liked best in the comments section below!

The Science of Infectious Disease Modeling

Oblong light-blue structures with red spots in the middle connected to the surface of a sphere. Spike proteins on the surface of a coronavirus. Credit: David Veesler, University of Washington.

What does “modeling the spread” (or “flattening the curve”) mean, and how does it apply to infectious diseases such as COVID-19? Learn about the science of infectious disease modeling and how NIGMS supports scientists in the field.

Continue reading “Year in Review: Our Top Three Posts of 2020”

Pathways: The Superbug Issue

1 comment
Cover of Pathways student magazine showing blueish-green virus particles and text that reads, Stop the Spread of Superbugs (Yes, you can help!). Cover of Pathways student magazine.

NIGMS and Scholastic bring you our latest issue of Pathways, which focuses on superbugs—infectious microbes that can’t be fought off with medicines. Viruses that can’t be prevented with vaccines, such as the common cold, and antibiotic-resistant bacteria both fall into this category.

Pathways, designed for students in grades 6 through 12, is a collection of free resources that teaches students about basic science and its importance to health, as well as exciting research careers.

Continue readingPathways: The Superbug Issue”

Shedding Light on Sepsis

1 comment

Sepsis is the body’s overactive and extreme response to an infection. It’s unpredictable, can progress rapidly, and affects more than 1.7 million people in the United States each year. Without prompt treatment, it can lead to tissue damage, organ failure, and death. NIGMS supports state-of-the-art sepsis research, including the development of rapid diagnostics and new therapeutics. September is Sepsis Awareness Month, and we’re highlighting a few resources that offer more information about this condition.

Our infographic provides details at a glance on basic statistics and the future of sepsis research. It’s also available in Spanish.

Continue reading “Shedding Light on Sepsis”

Learn Directly From Scientists Through Available Webinar Series

0 comments

Looking for more virtual learning opportunities? NIGMS recently recorded a series of 14 webinars where experts shared their knowledge on topics from infectious disease modeling to pursuing a career in biomedical science. With the start of the 2020-2021 academic year, we’re highlighting a webinar that’s particularly relevant for our Biomedical Beat readers who are educators. You can check out the whole series on the NIGMS YouTube channel.

Continue reading “Learn Directly From Scientists Through Available Webinar Series”

Sepsis: Using Big Data to Cut a Killer Down to Size

0 comments
A geographical outline of the U.S. with the text More than 1.7 million people get sepsis each year in the United States. View the full infographic for more facts about sepsis.

Sepsis is a serious medical condition caused by an overwhelming response to infection that damages tissues and organs. It’s unpredictable, progresses quickly, can strike anyone, and is a leading cause of hospital-related deaths. In the U.S. alone, nearly 270,000 people die each year from sepsis. Those who survive sepsis often end up in the hospital again, and some have long-term health complications. Early treatment is key for many patients to survive sepsis, yet doctors can’t easily diagnose it because it’s so complex and each patient is different.

Despite decades of research, sepsis remains a poorly understood condition with limited diagnostic tools and treatment. To tackle these obstacles, scientists Vincent Liu, Christopher Seymour, and Hallie Prescott have started using a “big data” approach, which relies on complex computer programs to sift through huge amounts of information. In this case, the computers analyze data such as demographic information, vital signs, and routine blood tests in the electronic health records of sepsis patients. The goal is to find patterns in the data that might help doctors understand, predict, and treat sepsis more effectively.

Continue reading “Sepsis: Using Big Data to Cut a Killer Down to Size”

On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers

0 comments

A college degree was far from the minds of Joshua and Caleb Marceau growing up on a small farm on the Flathead Indian Reservation in rural northwestern Montana. Their world centered on powwows, tending cattle and chicken, fishing in streams, and working the 20-acre ranch their parents own. Despite their innate love of learning and science, the idea of applying to and paying for college seemed out of reach. Then, opportunities provided through NIGMS, mentors, and scholarships led them from a local tribal college to advanced degrees in biomedical science. Today, both Joshua and Caleb are Ph.D.-level scientists working to improve public health through the study of viruses.

Joshua Discovers Unexpected Opportunities

Joshua Marceau examining a specimen in front of a large centrifuge.Joshua Marceau at Salish Kootenai College, where he gained research experience as an undergraduate. Credit: Joshua Marceau.

As the oldest of four brothers, Joshua was the trailblazer in the family. But like most trailblazers, his path to a scientific career wasn’t always smooth. He attended a reservation school until sixth grade, then was homeschooled. He earned his GED through the local tribal community college, Salish Kootenai College (SKC) in Pablo, so he could begin to take college-level chemistry.

Continue reading “On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers”

RNA Polymerase: A Target for New Antibiotic Drugs?

1 comment

DNA, with its double-helix shape, is the stuff of genes. But genes themselves are only “recipes” for protein molecules, which are molecules that do the real heavy lifting (or do much of the work) inside cells.

RNAP illustrated as a crab claw, clamping on a DNA double helix. Artist interpretation of RNAP grasping and unwinding a DNA double helix. Credit: Wei Lin and Richard H. Ebright.

Here’s how it works. A molecular machine called RNA polymerase (RNAP) travels along DNA to find a place where a gene begins. RNAP uses a crab-claw-like structure to grasp and unwind the DNA double helix at that spot. RNAP then copies (“transcribes”) the gene into messenger RNA (mRNA), a molecule similar to DNA.

The mRNA molecule travels to one of the cell’s many protein-making factories (ribosomes), which use the mRNA message as instructions for making a specific protein.

Continue reading “RNA Polymerase: A Target for New Antibiotic Drugs?”