Tag: Scientific Process

Explore Our Virtual Learning STEM Resources

0 comments

If you’re looking for engaging ways to teach science from home, NIGMS offers a range of resources that can help.

Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. A SEPA-funded resource about microbes. Credit: University of Nebraska, Lincoln.

Our Science Education and Partnership Award (SEPA) webpage features free, easy-to-access STEM and informal science education projects for pre-K through grade 12. Aligned with state and national standards for STEM teaching and learning, the program has tools such as:

  • Apps
  • Interactives
  • Online books
  • Curricula and lesson plans
  • Short movies

Students can learn about sleep, cells, growth, microbes, a healthy lifestyle, genetics, and many other subjects.

Continue reading “Explore Our Virtual Learning STEM Resources”

Crowdsourcing Science: Using Competition to Drive Creativity

0 comments
Six student researchers sitting around a table and collaborating on a project. Credit: iStock.

Historically, crowdsourcing has played an important role in certain fields of scientific research. Wildlife biologists often rely on members of the public to monitor animal populations. Using backyard telescopes, amateur astronomers provide images and measurements that lead to important discoveries about the universe. And many meteorologists use data collected by citizen scientists to study weather conditions and patterns.

Now, thanks largely to advances in computing, researchers in computational biology and data science are harnessing the power of the masses and making discoveries that provide valuable insights into human health.

Continue reading “Crowdsourcing Science: Using Competition to Drive Creativity”

On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers

0 comments

A college degree was far from the minds of Joshua and Caleb Marceau growing up on a small farm on the Flathead Indian Reservation in rural northwestern Montana. Their world centered on powwows, tending cattle and chicken, fishing in streams, and working the 20-acre ranch their parents own. Despite their innate love of learning and science, the idea of applying to and paying for college seemed out of reach. Then, opportunities provided through NIGMS, mentors, and scholarships led them from a local tribal college to advanced degrees in biomedical science. Today, both Joshua and Caleb are Ph.D.-level scientists working to improve public health through the study of viruses.

Joshua Discovers Unexpected Opportunities

Joshua Marceau examining a specimen in front of a large centrifuge.Joshua Marceau at Salish Kootenai College, where he gained research experience as an undergraduate. Credit: Joshua Marceau.

As the oldest of four brothers, Joshua was the trailblazer in the family. But like most trailblazers, his path to a scientific career wasn’t always smooth. He attended a reservation school until sixth grade, then was homeschooled. He earned his GED through the local tribal community college, Salish Kootenai College (SKC) in Pablo, so he could begin to take college-level chemistry.

Continue reading “On the RISE: Joshua and Caleb Marceau Use NIGMS Grant to Jump-Start Their Research Careers”

Get Kids Excited About Science: Free STEM Resources

0 comments
Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. Credit: University of Nebraska, Lincoln.

We have a new Science Education and Partnership Award (SEPA) webpage, featuring free, easy-to-access, SEPA-funded Link to external web site resources that educators nationwide can use to engage their students in science. The SEPA program supports innovative STEM Link to external web site and informal science education Link to external web site  projects for pre-kindergarten through grade 12. The program includes tools that teachers, scientists, and parents can use to excite kids about science and research, such as:

Continue reading “Get Kids Excited About Science: Free STEM Resources”

Don’t Be Afraid to Search in the Dark: Jon Lorsch Encourages Graduates to Consider New Perspectives

0 comments

Jon Lorsch, from Swarthmore College’s class of 1990, returned to his alma mater in May to accept an honorary Doctor of Sciences degree for his accomplishments as a biochemist and his visionary leadership of NIGMS. During the university’s 147th commencement, he spoke to the 2019 graduating class, offering advice and examples of how we can look for opportunities in the least likely places.

Watch the 5-minute video to hear Lorsch’s advice to the graduates—and all future scientists—to venture into the unknown in search of the next big advance in biomedical research.

Continue reading “Don’t Be Afraid to Search in the Dark: Jon Lorsch Encourages Graduates to Consider New Perspectives”

On Pi Day, Computational Biologists Share What They Love About Math

0 comments
Another cool fact about Pi: The mirror reflection of the numbers 3 1 4 spells out P I E.

Why do math lovers around the world call March 14 “Pi Day”? Because Pi, the ratio of a circle’s circumference to its diameter, is 3.14. Pi is a Greek letter (π) that represents a constant in math: All circles have the same Pi, regardless of their size. Pi has been calculated out to as many as 1 trillion digits past the decimal, and it can continue forever without repetition or pattern.

In honor of Pi Day, we asked several biomedical researchers in the field of computational biology to tell us why they love math and how they use it in their research. Continue reading “On Pi Day, Computational Biologists Share What They Love About Math”

Another Piece to a Century-Old Evolutionary Puzzle

0 comments
After mating about 55,000 pairs of fruit flies and sifting through 333,000 daughter flies, a research team found six sons that each had mutations in the same gene that helped make two fruit fly species unique from each other. Credit: Jim Woolace, Fred Hutch News Service.

Nitin Phadnis and Harmit Malik Exit icon set out to conduct an experiment that could solve a century-old evolutionary puzzle: How did two related fruit fly species arise from one? Years after they began their quest, they finally have an answer.

The existence of a gene that helps make each of these fruit fly species unique and separate from each other had been guessed at since 1940, following experiments decades earlier in which geneticists first noticed that the two types of flies, when mated, had only daughters—no sons.

Scientists had previously discovered two other genes involved in driving the fruit fly species apart, but they knew those two genes weren’t the full story. Continue reading “Another Piece to a Century-Old Evolutionary Puzzle”

New Views on What the Cell’s Parts Can Do

2 comments

Studying some of the most well-tread territory in science can turn up surprising new findings. Take, for example, the cell. You may have read in textbooks how the cell’s parts look and function during important biological processes like cellular movement and division. You may have even built models of the cell out of gelatin or clay. But scientists continue to learn new facts that require those textbooks to be updated, and those models to be reshaped. Here are a few examples.

Nuclear Envelope: More Than a Protective Barrier

Damaged heterochromatin represented by nucleotides GCAT
Damaged heterochromatin, a tightly packed form of DNA, travels to the inner wall of the nuclear envelope for repair. Credit: Irene Chiolo and Taehyun Ryu, University of Southern California.

Like a security guard checking IDs at the door, the nuclear envelope forms a protective barrier around the cell’s nucleus, only letting specific proteins and chemical signals pass through. Scientists recently found that this envelope may also act as a repair center for broken strands of heterochromatin, a tightly packed form of DNA.

Irene Chiolo of the University of Southern California and Gary Karpen of the University of California, Berkeley, and the Lawrence Berkeley National Laboratory were part of a team that learned that healthy fruit fly cells mend breaks in heterochromatin by moving the damaged DNA strands to the inner wall of the nuclear envelope. There, proteins embedded in the envelope make the necessary repairs in a safe place where the broken DNA can’t accidentally get fused to the wrong chromosome. Continue reading “New Views on What the Cell’s Parts Can Do”

Four Ways Inheritance Is More Complex Than Mendel Knew

3 comments
Original edition of Gregor Mendel’s 1866 publication, Experiments in Plant Hybridization
An original edition of Gregor Mendel’s 1866 publication, “Experiments in Plant Hybridization,” housed in NIH’s National Library of Medicine. Credit: Alisa Machalek.

This year marks the 150th anniversary of Gregor Mendel’s publication that—after sitting ignored for a few decades—helped launch the field of modern genetics. Mendel didn’t know about DNA. But after painstakingly cross-fertilizing tens of thousands of pea plants over the course of 8 years, this Austrian monk came very close to describing genes.

By picking a species with a handful of visible characteristics that occur in two easily identifiable forms, Mendel was able to pinpoint what he called “factors.” These factors determine traits like a pea’s shape or color, for instance, and are passed down from parents to offspring. He also observed that factors can be dominant or recessive.

Today, we know that inheritance is far more complex than what Mendel saw in his pea plants. Here are some of the things scientists have learned about how traits are passed from one generation to the next. Continue reading “Four Ways Inheritance Is More Complex Than Mendel Knew”