Advances in 3D Printing of Replacement Tissue

A bioprint of the small air sac in the lungs with red blood cells moving through a vessel network supplying oxygen to living cells. Credit: Rice University. A bioprint of the small air sac in the lungs with red blood cells moving through a vessel network supplying oxygen to living cells. Credit: Rice University.

A team of bioengineers, funded in part by NIGMS, has devised a way to use 3D bioprinting technology to construct the small air sacs in the lungs and intricate blood vessels. Continue reading “Advances in 3D Printing of Replacement Tissue”

RNA Polymerase: A Target for New Antibiotic Drugs?

DNA, with its double-helix shape, is the stuff of genes. But genes themselves are only “recipes” for protein molecules, which are molecules that do the real heavy lifting (or do much of the work) inside cells.

RNAP illustrated as a crab claw, clamping on a DNA double helix. Artist interpretation of RNAP grasping and unwinding a DNA double helix. Credit: Wei Lin and Richard H. Ebright.

Here’s how it works. A molecular machine called RNA polymerase (RNAP) travels along DNA to find a place where a gene begins. RNAP uses a crab-claw-like structure to grasp and unwind the DNA double helix at that spot. RNAP then copies (“transcribes”) the gene into messenger RNA (mRNA), a molecule similar to DNA.

The mRNA molecule travels to one of the cell’s many protein-making factories (ribosomes), which use the mRNA message as instructions for making a specific protein.

Continue reading “RNA Polymerase: A Target for New Antibiotic Drugs?”

A Scientist’s Exploration of Regeneration

Viravuth (“Voot”) Yin, standing with arms crossed and smiling in front of a shelves holding tanks of zebrafish in his lab. Viravuth (“Voot”) Yin, associate professor of regenerative biology and medicine at MDI Biological Laboratory and chief scientific officer at Novo Biosciences, Inc., in Bar Harbor, Maine. Credit: MDI Biological Laboratory.

In 1980, a week after his 6th birthday, Viravuth (“Voot”) Yin immigrated with his mother, grandfather, and three siblings from Cambodia to the United States. Everything they owned fit into a single, 18-inch carry-on bag. They had to build new lives from almost nothing. So, it’s perhaps fitting that Yin studies regeneration, the fascinating ability of some animals, such as salamanders, sea stars, and zebrafish, to regrow damaged body parts, essentially from scratch.

Yin’s path wasn’t always smooth. His family settled in Hartford, Connecticut, near an uncle who had been granted asylum during the Vietnam War. Yin got into a lot of trouble in school, trying to learn a new culture and fit in. Things improved when his mother moved him and his siblings to West Hartford, well known for its strong schools.

Continue reading “A Scientist’s Exploration of Regeneration”

Cilia: Tiny Cell Structures With Mighty Functions

Black-and-white video of cilia lining a cell wall and waving back and forth. Credit: Zvonimir Dogic, Brandeis University.

Imagine an army of tiny soldiers stationed throughout your body, lining cells from your brain to every major organ system. Rather than standing at attention, this tiny force sweeps back and forth thousands of times a minute. Their synchronized action helps move debris along the ranks to the nearest opening. Other soldiers stand as sentries, detecting changes in your environment, relaying that information to your brain, and boosting your senses of taste, smell, sight, and hearing.

Your brain may be the commander in chief, but these rank-and-file soldiers are made up of microscopic cell structures called cilia (cilium in singular).

Here we describe these tiny but mighty cell structures in action.

Continue reading “Cilia: Tiny Cell Structures With Mighty Functions”

Don’t Be Afraid to Search in the Dark: Jon Lorsch Encourages Graduates to Consider New Perspectives

Jon Lorsch, from Swarthmore College’s class of 1990, returned to his alma mater in May to accept an honorary Doctor of Sciences degree for his accomplishments as a biochemist and his visionary leadership of NIGMS. During the university’s 147th commencement, he spoke to the 2019 graduating class, offering advice and examples of how we can look for opportunities in the least likely places.

Watch the 5-minute video to hear Lorsch’s advice to the graduates—and all future scientists—to venture into the unknown in search of the next big advance in biomedical research.

Continue reading “Don’t Be Afraid to Search in the Dark: Jon Lorsch Encourages Graduates to Consider New Perspectives”

Computational Biologist Melissa Wilson on Sex Chromosomes, Gila Monsters, and Career Advice

Melissa Wilson wearing a floral dress and speaking beside a podium during her lecture. Dr. Melissa Wilson.
Credit: Chia-Chi Charlie Chang.

The X and Y chromosomes, also known as sex chromosomes, differ greatly from each other. But in two regions, they are practically identical, said Melissa Wilson Link to external web site, assistant professor of genomics, evolution, and bioinformatics at Arizona State University.

“We’re interested in studying how the process of evolution shaped the X and the Y chromosome in gene content and expression and how that subsequently affects literally everything else that comes with being a human,” she said at the April 10 NIGMS Director’s Early-Career Investigator (ECI) Lecture at NIH.

Continue reading “Computational Biologist Melissa Wilson on Sex Chromosomes, Gila Monsters, and Career Advice”

Amazing Organisms and the Lessons They Can Teach Us

What do you have in common with rodents, birds, and reptiles? A lot more than you might think. These creatures have organs and body systems very similar to our own: a skeleton, digestive tract, brain, nervous system, heart, network of blood vessels, and more. Even so-called “simple” organisms such as insects and worms use essentially the same genetic and molecular pathways we do. Studying these organisms provides a deeper understanding of human biology in health and disease, and makes possible new ways to prevent, diagnose, and treat a wide range of conditions.

Historically, scientists have relied on a few key organisms, including bacteria, fruit flies, rats, and mice, to study the basic life processes that run bodily functions. In recent years, scientists have begun to add other organisms to their toolkits. Many of these newer research organisms are particularly well suited for a specific type of investigation. For example, the small, freshwater zebrafish grows quickly and has transparent embryos and see-through eggs, making it ideal for examining how organs develop. Organisms such as flatworms, salamanders, and sea urchins can regrow whole limbs, suggesting they hold clues about how to improve wound healing and tissue regeneration in humans.

Continue reading “Amazing Organisms and the Lessons They Can Teach Us”

PREP Scholar’s Passion for Understanding Body’s Defenses

Photo of Charmaine Nganje, with curly red shoulder-length hair and eyeglasses, smiling..

Charmaine N. Nganje, PREP scholar at Tufts University in Boston.
Credit: Katherine Suarez.

Charmaine N. Nganje

Hometown: Montgomery Village, Maryland

Influential book : The Harry Potter series (not exactly influential, but they’re my favorite)

Favorite movie/TV show: The Pursuit of Happyness/The Flash

Languages: English (and a bit of Patois)

Unusual fact: I’m the biggest Philadelphia Eagles fan from Maryland that you’ll ever meet

Hobbies: Off-peak traveling

Q. Which NIGMS program are you involved with?

A. The Postbaccalaureate Research Education Program (PREP) Link to external web site at the Sackler School of Graduate Biomedical Sciences at Tufts University in Boston.

Continue reading “PREP Scholar’s Passion for Understanding Body’s Defenses”