Author: Abbey Bigler-Coyne

Headshot of Abbey Bigler

Abbey is a science writer who enjoys making important biological science and public health information accessible to everyone.

Posts by Abbey Bigler-Coyne

Fish Shed Light on Fatherhood in the Animal Kingdom

0 comments
Two small gray adult monkeys, one of which has two baby monkeys on its back, on a tree branch. A family of common marmosets. Credit: Francesco Veronesi. CC BY-SA 2.0 Link to external web site.

Fatherhood takes many forms across the animal kingdom. For instance, mammalian fathers are often uninvolved, with only about 10 percent helping to raise their offspring. However, that small percentage of males often makes valuable contributions to their offspring’s upbringing. For instance, cotton-top tamarin and common marmoset dads have the responsibility of carrying babies—which are typically born as sets of twins—almost constantly from birth until independence.

In other groups of animals, fathers are much more likely to share responsibilities with mothers or even act as sole caregivers. Male and female birds contribute equally to raising chicks in most cases. But in rheas and emus—both large, flightless birds—fathers incubate eggs and take care of hatchlings on their own.

And most fish don’t care for their young, but out of the species that do, between one-third and one-half rely on fathers parenting alone. Perhaps the most well-known example is the seahorse, where the male becomes pregnant, carrying his mate’s fertilized eggs in a pouch on his belly until they hatch. Alison M. Bell, Ph.D. Link to external web site, professor of evolution, ecology, and behavior at the University of Illinois at Urbana-Champaign, is investigating paternal care in another fish species where fathers raise offspring solo: the three-spined stickleback. Her work not only helps us understand the value of paternal care for sticklebacks, but also contributes to growing evidence across many species that fatherhood changes males on a physiological level.

Continue reading “Fish Shed Light on Fatherhood in the Animal Kingdom”

Scientist Interview: Studying the Biochemistry of Insects with Michael Kanost

1 comment

Insects vastly outnumber people on our planet. Some are pests, but many are key parts of their ecosystems, and some may even hold secrets for developing new materials that researchers could use in the medical field. Michael Kanost, Ph.D. Link to external web site, a professor of biochemistry and molecular biophysics at Kansas State University in Manhattan, Kansas, has been researching the biochemistry of insects for more than 30 years. His lab studies the tobacco hornworm, a mosquito that carries malaria, and the red flour beetle to better understand insect exoskeletons and immune systems.

Continue reading “Scientist Interview: Studying the Biochemistry of Insects with Michael Kanost”

Helium: An Abundant History and a Shortage Threatening Scientific Tools

0 comments

Most of us know helium as the gas that makes balloons float, but the second element on the periodic table does much more than that. Helium pressurizes the fuel tanks in rockets, helps test space suits for leaks, and is important in producing components of electronic devices. Magnetic resonance imaging (MRI) machines that take images of our internal organs can’t function without helium. And neither can nuclear magnetic resonance (NMR) spectrometers that researchers use to determine the structures of proteins—information that’s important in the development of medications and other uses.

A square showing helium’s abbreviation, atomic number, and atomic weight connected by lines to illustrations of a scuba diver, a car, and a person in an MRI machine. Helium’s many uses include helping deep sea divers breathe underwater, airbags in cars to inflate, and magnets in MRI scanners to work properly. Credit: Compound Interest.
CC BY-NC-ND 4.0 Link to external web site. Click to enlarge
Continue reading “Helium: An Abundant History and a Shortage Threatening Scientific Tools”

Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke

1 comment

Whether animals are looking for food or mates, or avoiding pathogens and predators, they rely on biosensors—molecules that allow them to sense and respond to their environments. Christina Dawn Smolke, Ph.D. Link to external web site, a professor of bioengineering at Stanford University in California, focuses her research on creating new kinds of biosensors to receive, process, and transmit molecular information. Her lab has built RNA molecules, or switches, that can alter gene expression based on biochemical changes they detect.

Continue reading “Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke”

The Maternal Magic of Mitochondria

5 comments
An oblong purple shape with ripples throughout against a light blue background. Mitochondria (purple) in a rodent heart muscle cell. Credit: Thomas Deerinck, National Center for Microscopy and Imaging Research.

Mitochondria (mitochondrion in singular) are indispensable. Every cell of our bodies, apart from mature red blood cells, contains the capsule-shaped organelles that generate more than 90 percent of our energy, which is why they’re often called “the powerhouse of the cell.” They produce this energy by forming adenosine triphosphate (ATP), our cells’ most common energy source. But mitochondria also support cells in other ways. For example, they help cells maintain the correct concentration of calcium ions, which are involved in blood clotting and muscle contraction. Mitochondria are also the only structure in our cells with their own unique DNA, which with rare exceptions, is inherited only from mothers. That’s why, in honor of Mother’s Day, we’re exploring this special cellular connection to moms.

Continue reading “The Maternal Magic of Mitochondria”

Cool Images: The Hidden Beauty Inside Plants

0 comments

Spring brings with it a wide array of beautiful flowers, but the interior structures of plants can be just as stunning. Using powerful microscopes, researchers can peek into the many molecular bits and pieces that make up plants. Check out these cool plant images from our Image and Video Gallery that NIGMS-funded scientists created while doing their research.

Several round structures that are yellow at the center and pink and purple around the edges and have honeycomb-like interiors. Credit: Arun Sampathkumar and Elliot Meyerowitz, California Institute of Technology.

In plants and animals, stem cells can transform into a variety of different cell types. The stem cells at the growing tip of this Arabidopsis plant will soon become flowers. Cellular and molecular biologists frequently study Arabidopsis because it grows rapidly (its entire life cycle is only 6 weeks), produces lots of seeds, and has a genome that’s easy to manipulate.

Continue reading “Cool Images: The Hidden Beauty Inside Plants”

All About Grants: Basics 101

2 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

A female scientist in a lab using a pipette. Scientific research requires many resources, which all require funding.
Credit: Michele Vaughan.

Scientific inspiration often strikes unexpectedly. The Greek mathematician and inventor Archimedes first thought of the principles of volume while taking a bath. Otto Loewi designed an important experiment on nerve cells based on a dream involving frog hearts.

But going from an initial moment of inspiration to a final answer can be a long and complex process. Scientific research requires many resources, including laboratory equipment, research organisms, and scientists’ time. And all of this requires funding. Government grants support the majority of research in the United States, and the main source of these grants for biomedical researchers is the National Institutes of Health (NIH). NIH is the primary federal agency for conducting and supporting basic, clinical, and translational medical research. It investigates the causes, treatments, and cures for both common and rare diseases.

Continue reading “All About Grants: Basics 101”

Explore Our Virtual Learning STEM Resources

1 comment

If you’re looking for engaging ways to teach science from home, NIGMS offers a range of resources that can help.

Cover of the graphic novel Occupied by Microbes!, showing four teens racing downhill on skateboards. A SEPA-funded resource about microbes. Credit: University of Nebraska, Lincoln.

Our Science Education and Partnership Award (SEPA) webpage features free, easy-to-access STEM and informal science education projects for pre-K through grade 12. Aligned with state and national standards for STEM teaching and learning, the program has tools such as:

  • Apps
  • Interactives
  • Online books
  • Curricula and lesson plans
  • Short movies

Students can learn about sleep, cells, growth, microbes, a healthy lifestyle, genetics, and many other subjects.

Continue reading “Explore Our Virtual Learning STEM Resources”

PECASE Honoree James Olzmann Investigates the Secrets of Lipid Droplets

0 comments

Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.

A large, blue oval surrounded by much smaller yellow circles. A cell nucleus (blue) surrounded by lipid droplets (yellow). Credit: James Olzmann.

Within our cells, lipids are often stored in droplets, membrane-bound packages of lipids produced by the endoplasmic reticulum. For many years, scientists thought lipid droplets were simple globs of fat and rarely studied them. But over the past few decades, research has revealed that they’re full-fledged organelles, or specialized structures that perform important cellular functions. The field of lipid droplet research has been growing ever since.

Continue reading “PECASE Honoree James Olzmann Investigates the Secrets of Lipid Droplets”

Revealing a Piece of Cilia’s Puzzle

1 comment
A multicolored tube made up of small dots with three sets of appendages attached along its length. A partial model of a doublet microtubule. Credit: Veronica Falconieri.

Cilia (cilium in singular) are complex organelles found on all of our cells except red blood cells. Their rhythmic beating moves fluid or materials over the cell to help transport food and oxygen or remove debris. For example, cilia in our windpipe prevent bacteria and mucous from traveling to the lungs. Some pick up signals like antennae, such as cilia in our ears that help detect sounds. One component of cilia is the doublet microtubule, a major part of cilia’s skeleton that gives it strength and rigidity.

Continue reading “Revealing a Piece of Cilia’s Puzzle”