Category: Tools and Techniques

Cloudy With a Chance of Scientific Discoveries

0 comments

The cloud. To many, it’s a mysterious black hole that somehow transports photos and files from their old or lost phone to their new one. To some researchers, though, it’s an invaluable resource that allows them access to data analytics tools they wouldn’t otherwise have.

Hands typing on a laptop with a digitized cloud and computer icons floating above them.
Credit: iStock.

Scientists have begun using cloud computing to store, process, and analyze their data through online bioinformatics tools. Biological data sets are often large and hard to interpret, requiring complex calculating instructions—or algorithms—to understand them. Fortunately, these algorithms can run on local computers or remotely through cloud computing.

One advantage of cloud-based programs over local computers is the ability to analyze data without taking up the user’s personal storage space. With cloud-based storage, researchers can store their large data files, including their labeled notes called annotations. Another benefit is that users have easy access to software packages within the cloud for data analysis. The cloud also encourages collaboration among scientists by making it easy to share large amounts of data.

Continue reading “Cloudy With a Chance of Scientific Discoveries”

Photographing the Physics of Cells

0 comments
Dr. Lakadamyali sitting behind a large, complex microscope in a lab.
Dr. Melike Lakadamyali with a microscope. Credit: Courtesy of Dr. Lakadamyali.

“It would be a dream come true if I could look at a cell within a tissue and have a Google Maps view to zoom in until I saw individual molecules,” says Melike Lakadamyali, Ph.D., an associate professor of physiology at the University of Pennsylvania’s Perelman School of Medicine in Philadelphia. Her lab is helping make part of that dream a reality by developing super-resolution microscopy tools that visualize cells at a near-molecular level.

Blending Physics and Biology

Science and math fascinated Dr. Lakadamyali since childhood, and she felt especially drawn to physics because she enjoyed using logic to solve problems. After graduating high school in her native country of Cyprus, she chose to study physics at the University of Texas, Austin. She never gave much thought to applying physics methods to biological
questions—a field known as biophysics—until her third year as an undergraduate, when she gained her first research experience in the lab of Josef Käs, Ph.D.

Continue reading “Photographing the Physics of Cells”

Quiz: What Can Research Organisms Reveal About Health?

0 comments

Scientists often use research organisms to study life. Examples range from simple organisms like bacteria to more complex ones such as mice. NIGMS funds studies of research organisms to understand biological processes that are common to all organisms, including humans. Errors in these fundamental processes can cause disease, and better understanding of these malfunctions can aid in the development of potential treatments.

Research organisms may also reveal novel biological processes that can lead to important scientific or medical technologies. For example, researchers studying interactions between viruses and bacteria made a discovery that led to the CRISPR (clustered regularly interspaced short palindromic repeats) gene-editing system, which was recognized by the 2020 Nobel Prize in chemistry.

Continue reading “Quiz: What Can Research Organisms Reveal About Health?”

Fifty Years of the Protein Data Bank!

0 comments
Macromolecular structures in the shape of the number 50. Protein Data Bank’s 50 years logo. Credit: PDB website.

The Protein Data Bank (PDB), established in 1971, is the single global repository for 3D structural data of proteins, DNA, RNA, and even complexes these biological molecules form with drugs or other small molecules. More than 1 million people—including researchers, medical professionals, educators, and students—use the PDB each year. NIGMS and other parts of NIH have helped fund this free digital resource since 1978.

Continue reading “Fifty Years of the Protein Data Bank!”

Biology Beyond the Lab: Using Computers to Study Life

1 comment
A headshot of Dr. Melissa Wilson.
Learn more about Dr. Melissa Wilson’s computational biology research in another Biomedical Beat blog post. Credit: Jacob Sahertian, ASU.

“You’re not going to be able to do biology without understanding programming in the future,” Melissa Wilson, Ph.D., an associate professor of genomics, evolution, and bioinformatics at Arizona State University, said in her 2019 NIGMS Early Career Investigator Lecture. “You don’t have to be an expert programmer. But without understanding programming, I can assert you won’t be able to do biology in the next 20 years.”

A growing number of researchers, like Dr. Wilson, are studying biology using computers and mathematical methods. Some of them started in traditional biology or other life science labs, while others studied computer science or math first. Here, we’re featuring two researchers who took different paths to computational biology.

Continue reading “Biology Beyond the Lab: Using Computers to Study Life”

A Focus on Microscopes: See Eye-Catching Images

3 comments

Have you ever wondered what creates striking images of cells and other tiny structures? Most often, the answer is microscopes. Many of us have encountered basic light microscopes in science classes, but those are just one of many types that scientists use. Check out the slideshow to see images researchers have captured using different kinds of microscopes. For even more images of the microscopic world, visit the NIGMS Image and Video Gallery.

Continue reading “A Focus on Microscopes: See Eye-Catching Images”

Quiz: Are You a Genetics Genius?

3 comments

Genes are segments of DNA. They contain instructions for building one or more molecules that help the body work. Researchers in the field of genetics study genes and heredity—how certain traits are passed from parents to their offspring through DNA. NIGMS supports many scientists who investigate the genetics of people and research organisms to better understand human health and disease.

Take our quiz below to test how much you know about genetics. For more quizzes and other fun learning tools, visit our activities and multimedia webpage.

Continue reading “Quiz: Are You a Genetics Genius?”

Pathways: The Imaging Issue

0 comments
Cover of Pathways student magazine showing geometric shapes, pom-pom-like structures, and text that reads, Dive into the microscopic world. What do you think this image shows? Hint: It’s NOT an underwater scene! (Answer inside). Cover of Pathways student magazine.

NIGMS and Scholastic bring you our latest issue of Pathways, which focuses on imaging tools that help scientists unlock the mysteries of our cells and molecules. A better understanding of this tiny world can help researchers learn about the body’s normal and abnormal processes and lead to more effective, targeted treatments for illnesses.

Pathways is designed for students in grades 6 through 12. This collection of free resources teaches students about basic science and its importance to health, as well as exciting research careers.

Continue readingPathways: The Imaging Issue”

Year in Review: Our Top Three Posts of 2020

0 comments

Over the year, we dove into the inner workings of cells, interviewed award-winning researchers supported by NIGMS, shared a cool collection of science-themed backgrounds for video calls, and more. Here, we highlight three of the most popular posts from 2020. Tell us which of this year’s posts you liked best in the comments section below!

The Science of Infectious Disease Modeling

Oblong light-blue structures with red spots in the middle connected to the surface of a sphere. Spike proteins on the surface of a coronavirus. Credit: David Veesler, University of Washington.

What does “modeling the spread” (or “flattening the curve”) mean, and how does it apply to infectious diseases such as COVID-19? Learn about the science of infectious disease modeling and how NIGMS supports scientists in the field.

Continue reading “Year in Review: Our Top Three Posts of 2020”

An Enlightening Protein

0 comments
A fly glowing green. A fruit fly expressing GFP. Credit: Jay Hirsh, University of Virginia.

During the holiday season, twinkling lights are a common sight. But no matter what time of the year, you can see colorful glows in many biology labs. Scientists have enabled many organisms to light up in the dark—from cells to fruit flies and Mexican salamanders. These glowing organisms help researchers better understand basic cell processes because their DNA has been edited to express molecules such as green fluorescent protein.

Continue reading “An Enlightening Protein”