Every one of our thoughts, emotions, sensations, and movements arise from changes in the flow of electricity in the brain. Disruptions to the normal flow of electricity within and between cells is a hallmark of many diseases, especially neurological and cardiac diseases.
The source of electricity within nerve cells (i.e., neurons) is the separation of charge, referred to as voltage, across neuronal membranes. In the past, scientists weren’t able to identify all the molecules that control neuronal voltage. They simply lacked the tools. Now, University of Colorado biologist Joel Kralj has developed a way to overcome this hurdle. His new technique—combining automated imaging tools and genetic manipulation of cells—is designed to measure the electrical contribution of every protein coded by every gene in the human genome. Kralj believes this technology will usher in a new field of “electromics” that will be of enormous benefit to both scientists studying biological processes and clinicians attempting to treat disease.
In 2017, Kralj won a New Innovator Award from the National Institutes of Health for his work on studying voltage in neurons. He is using the grant money to develop a new type of microscope that will be capable of measuring neuronal voltage from hundreds of cells simultaneously. He and his research team will then attempt to identify the genes that encode any of the 20,000 proteins in the human body that are involved in electrical signaling. This laborious process will involve collecting hundreds of nerve cells, genetically removing a single protein from each cell, and using the new microscope to see what happens. If the voltage within a cell is changed in any way when a specific protein is removed, the researchers can conclude that the protein is essential to electrical signaling.
In this video, Kralj discusses how he plans to use his electromics platform to study electricity-generating cells throughout the body, as well as in bacterial cells (see our companion blog post “Feeling Out Bacteria’s Sense of Touch” featuring Kralj’s research for more details).
Dr. Kralj’s work is funded in part by the NIH under grant 1DP2GM123458-01.
Oxford University. Credit: Andrew Shiva, Wikimedia Commons CC BY-SA.
MARC U-STAR Scholars Jasmine Brown and Naomi Mburu were among 32 Americans to recently receive the prestigious Rhodes Scholarship at Oxford University in England. Rhodes Scholars are chosen for their academic and research achievements, as well as their commitment to others and leadership potential.
As current MARC U-STAR Scholars, Brown and Mburu are part of an NIGMS research training program for undergraduate junior and senior honor students. MARC is designed to increase the number of people from groups underrepresented in biomedical sciences by preparing students for high-caliber, doctorate-level training.
Here’s more about these two distinguished women:
Credit: Joe Angeles, WashU Photos.
Jasmine Brown, 21
Brown, of Hillsborough, New Jersey, is a senior at Washington University in St. Louis and works as a research assistant at the Washington University School of Medicine. There, she studies genes that are protective against mental defects that result from West Nile-induced brain inflammation. After she receives her bachelor’s degree in biology, she plans to earn a doctorate degree in neuroscience as a Rhodes Scholar at Oxford University.
In addition to her current training as a MARC Scholar, Brown has spent her summers as an undergraduate research assistant, engaging in the study of these other notable subjects:
Lung cancer, at the Broad Institute of MIT and Harvard (2017)
Specific drugs’ cough-suppressing effects, at Johns Hopkins University School of Medicine (2015)
Long-term neurological effects of cocaine and other stimulants on the teen brain, at the University of Miami Miller School of Medicine (2014)
“What I love about science is that it gives me tools to generate answers and to improve human health. It’s a fun process for me, but also a satisfying one because I can make an impact,” Brown said in a statement.
Equally important to her studies, Brown is a champion for other underrepresented students in the sciences. After her own experience as the target of prejudice, Brown started the Minority Association of Rising Scientists (MARS) to support underrepresented students participating in research and inform faculty members about implicit bias. With the help of the National Science Foundation, Brown is working to expand MARS nationwide.
Brown has given back to the community in other ways. She was a member of The Synapse Project, which prepares high school students for a neuroscience competition called Brain Bee. She was also a 2014-2015 candidate for Mx. WashU, an organization that raises money for a children’s program called City Faces.
Naomi Mburu, 21
Credit: Marlayna Desmond for UMBC.
Naomi Mburu, of Ellicott City, Maryland, is the daughter of Kenyan immigrants and the first student in the history of the University of Maryland Baltimore County (UMBC) to receive the Rhodes Scholarship. The senior in chemical engineering plans to complete a doctorate in engineering science and to research heat transfer applications for nuclear fusion reactors.
“I believe the Rhodes Scholarship will allow me to foster a stronger community amongst my fellow scholars because we will all be attending the same institution,” Mburu said in a statement.
Mburu is currently working with Gymama Slaughter, UMBC associate professor of computer science and electrical engineering, to develop a machine that ensures human organs remain healthy as they await transplant .
During her recent summer internship with Intel, Mburu developed an interactive model to estimate the cost of coatings applied to equipment. Her work helped improve pricing negotiations and established additional cost estimates for other chemical processes.
Her other areas of research have included:
Assessing phosphate’s effects on the ribosomal protein L4 as a student at Mount Hebron High School
Measuring the impurities found in the Large Hadron Collider particle accelerator, at the European Organization for Nuclear Research, Geneva, Switzerland
Mburu’s aspirations involve not just science but education advocacy. Her passion for STEM education and increasing diversity in STEM fields led to her current involvement as a MARC trainee, where she’s learned to communicate her desire to make a global impact through her science research and her efforts to remove barriers to education equality.
In her free time, Mburu has helped K-12 students with their homework during her time at UMBC. She continues to mentor youth and helps high school girls on STEM-related research projects.
One of NIGMS’ primary goals is to provide support to train the next generation of biomedical research scientists. In pursuit of this goal, NIGMS aims to enhance the diversity of the scientific workforce and develop research capacities throughout the country. NIGMS-administered training programs at the undergraduate level provide support for trainees underrepresented in the biomedical sciences to develop skills to successfully transition into doctoral programs. Three unique NIGMS-administered undergraduate-focused programs are highlighted below.
Building Infrastructure Leading to Diversity (BUILD) grant awards help undergraduate institutions implement and study ways to engage and retain students from diverse backgrounds in biomedical research. The program aims to help these students on the pathway to becoming scientists. Primary institutions eligible for BUILD awards have fewer than $7.5 million in total NIH research project grant funding and a student population with at least 25 percent Pell Grant recipients. BUILD is part of the Common Fund Diversity Program Consortium, a national collaborative dedicated to enhancing diversity in the biomedical research workforce.
Maximizing Access to Research Careers Undergraduate Student Training in Academic Research (MARC U-STAR) awards provide support for undergraduate trainees from underrepresented backgrounds to gain skills and improve their preparation for high-caliber graduate training at the doctoral level. Awards are made to colleges and universities that offer the baccalaureate degree.
The Research Initiative for Scientific Enhancement (RISE) program aims to help reduce the existing gap between underrepresented and well-represented students in completing doctoral degrees. RISE supports institutions that award the baccalaureate, master’s, or doctoral degree in biomedical science fields; programs include well-integrated developmental activities designed to strengthen students’ academic preparation, research training, and professional skills.
Although BUILD, MARC, and RISE offer a variety of activities at more than 100 supported institutions during the school year—including laboratory research opportunities, faculty mentoring, seminars, and workshops—the programs also provide training experiences throughout the summer. The slideshow below gives a quick peek into what several students participating in MARC, RISE, and BUILD activities did over the summer.
Lori Gildehaus and her lovable, mischievous dog, Charley. Credit: Lori Gildehaus.
Lori Gildehaus loves her job because she’s almost always doing something different. Some days, she leads professional development sessions for undergraduate students at the University of Alaska, Fairbanks (UAF). Other days, she’s weathered down in isolated communities along Alaska’s coast while leading community science and outreach events. These activities are just a few of her many responsibilities. Gildehaus is a laboratory research and teaching technician for UAF’s Biomedical Learning and Student Training (BLaST) program.
UAF’s BLaST program is one of 10 sites across the country in the Building Infrastructure Leading to Diversity (BUILD) initiative. As a component of the NIH Diversity Program Consortium, BUILD aims to find the best ways to engage and retain students from diverse backgrounds in biomedical research. Each BUILD site is as unique as the community it serves. UAF’s BLaST program embraces Alaska Native culture and the unique landscape that its students, faculty, and staff call home.
UAF attracts students from across Alaska, making for a diverse student body. BLaST serves not only UAF but also seven other campuses throughout Alaska, ranging from IỊisaġvik College in Utqiaġvik (formerly Barrow) at the northern tip of the state, to the University of Alaska Southeast in Sitka, more than 1,000 miles away. In any area that large, it would be difficult to organize community science outreach and foster connections between institutions. But in Alaska, there aren’t even roads connecting most rural campuses to Fairbanks.
Bridging gaps
Gildehaus and BLaST’s four other laboratory research and teaching technicians help bridge these gaps and bring science to local communities. They also serve as intermediaries between undergraduate students doing research and their professors. For undergraduates, talking to professors can be intimidating, and navigating the university landscape can be overwhelming. One of Gildehaus’ responsibilities is providing guidance to students.
“We want undergraduates to have a really good opportunity to explore their interests and have a good experience on their research projects,” Gildehaus says.
Gildehaus has a broad background, including biological sciences, human anatomy and physiology, science outreach, and mentoring. This experience helps her develop BLaST’s mentoring component. BLaST uses a tiered mentoring approach to provide opportunities for undergraduate and graduate students to share experiences and participate in mentoring.
Gildehaus has planned three mentoring workshops for fall 2017. One of these workshops, organized with assistance from the National Research Mentoring Network , will focus on culturally aware mentoring. Another will teach attendees how to navigate conversations, share stories, and increase awareness and understanding of Alaska Native and other cultures.
Bringing science outside the lab
BLaST’s diverse group of students includes many people who reside in rural areas and live a subsistence lifestyle. Traditional lab work schedules and science education can often seem disconnected from these communities. To better engage students, BLaST implements the One Health Approach, which emphasizes the interconnectedness between human, animal, and environmental health by promoting ways to expand interdisciplinary collaborations to attain optimal health for all. The program helps students recognize that there are opportunities to be involved in biomedical research in their communities, such as researching the natural vegetation of the Alaskan tundra, studying marine mammals, or finding cures for illnesses. Continue reading “Having a BLaST in Alaska … and Beyond”
It’s back! Check out the new issue of Findings magazine.
Findings presents cutting-edge research from scientists in diverse biomedical fields. The articles are aimed at high school students with the goal of making science—and the people who do it—interesting and exciting, and to inspire young readers to pursue careers in biomedical research. In addition to putting a face on science, Findings offers activities such as quizzes and crossword puzzles and, in its online version, video interviews with scientists.
As school starts up again, we look forward to a year that further enhances health and science literacy and brings students closer to pursuing science as an exciting future career. The National Institutes of Health continues to help both educators and students toward these goals through its Science Education Partnership Award (SEPA) Program .
What Is SEPA?
SEPA funds innovative science, technology, engineering, and mathematics (STEM), and informal science education (ISE) projects for students in pre-kindergarten through grade 12 (P-12), as well as public outreach activities such as science museum exhibits. Its goal is to invest in educational activities, including interactive online resources, that improve the training of a future workforce to meet the country’s biomedical research needs. SEPA encourages partnerships between biomedical researchers and P-12 teachers, schools, and other interested groups. SEPA provides:
Opportunities for students from underserved communities to learn about careers in basic or clinical research.
Professional development, skills, and knowledge building for science teachers.
Support for science centers and museum exhibits on health and medicine to improve community health literacy.
In March 2017, SEPA found its new home with the National Institute of General Medical Sciences (NIGMS). Congress mandated the move so that SEPA could more efficiently integrate with our other institution-building and research training programs and increase collaboration opportunities between them.
SEPA-Funded Resources
The following are just some of the various SEPA-funded resources that educators can use to engage their students in science:
The Partnership in Education at Duquesne University specializes in using cutting-edge technologies and creative media platforms—including videos, apps, posters, and lesson plans—to bring science to life and inspire lifelong learning. Topics include development , evolution , the science of sleep, and regenerative medicine .
This month, our blog that highlights NIGMS-funded research turns four years old! For each candle, we thought we’d illuminate an aspect of the blog to offer you, our reader, an insider’s view.
Who are we?
Over the years, the editorial team has included onsite science writers, office interns, staff scientists and guest authors from universities. Kathryn, who’s a regular contributor, writes entirely from her home office. Chris, who has a Ph.D. in neuroscience and now manages the blog, used to do research in a lab. Alisa has worked in NIGMS’ Bethesda-based office the longest: 22 years! She and I remember when we first launched Biomedical Beat as an e-newsletter in 2005. You can read more about each of the writers on the contributors page and if you know someone who’s considering a career in science communications, tell them to drop us a line.
How do we come up with the stories?
We get our story ideas from a range of sources. For instance, newspaper articles about an experimental pest control strategy in Florida and California prompted us to write about NIGMS-funded studies exploring the basic science of the technique. A beautiful visual from a grantee’s institution inspired a short post on tissue regeneration research. And an ongoing conversation with NIGMS scientific staff about the important role of research organisms in biological studies sparked the idea for a playful profile of one such science superstar.
A big change in our storytelling has been shifting the focus from a single finding to broader progress in a lab or field. So instead of reporting on a study just published in a scientific journal, we may write about the scientist’s career path or showcase a collection of recent findings in that particular field. These approaches help us demonstrate that scientific understanding usually progresses through the slow and steady work undertaken by many labs.
What are our favorite posts?
I polled the writers on posts they liked, and the list is really long! Here are the top picks.
We regularly review data about the number of times a blog post has been viewed to identify the ones that interest readers the most. That information also helps guide our decisions about other topics to feature on the blog. The Cool Image posts are among the most popular! Below are some other chart-topping posts.
We always like hearing from readers! If there’s a basic biomedical research topic you’d like us to write about, or if you have feedback on a story or the blog in general, please leave your suggestions in the comment field below.
This is the fourth post in a new series highlighting NIGMS’ efforts toward developing a robust, diverse and well-trained scientific workforce.
Marina Z. Nakhla Hometown: West Los Angeles, California Blogs For:Ottobock “Life in Motion,” a forum for the amputee community, where she’s covered topics ranging from medical insurance to dating. Influential Book: The Catcher in the Rye by J.D. Salinger Favorite TV Show: Grey’s Anatomy Languages: English and Arabic Unusual Fact: Gets a new pair of legs every year or two
Nakhla at her graduation from California State University, Northridge, where she graduated with a B.A. in psychology with honors. She is currently a second-year master’s student there studying clinical psychology. Credit: Christina Nakhla.
When Marina Z. Nakhla was just a toddler, she lost both of her legs. Now 22 and a graduate student at California State University, Northridge (CSUN), she has hurdled obstacles most of us never face.
Nakhla conducts research to better understand the decrease in mental abilities experienced by people with brain diseases. She is a scholar in CSUN’s Research Initiative for Scientific Enhancement (RISE) Program. This training program aims to enrich and diversify the pool of future biomedical researchers. Her long-term goal is to earn a Ph.D., to work as a clinical psychologist and to continue conducting research in neuropsychology. Along the way, she aspires to be a leader to her peers and an advocate for underrepresented people, particularly those with disabilities.
I first learned about Nakhla from an email message titled “CSUN RISE Student.” The acronym, pronounced “see [the] sun rise,” is an apt motto for a program that prepares students for a bright future in science. I believe it also encapsulates Nakhla’s positive, forward-looking mindset, despite the obstacles she has faced. Here’s her story:
Q: What got you interested in science?
A: Growing up, I was always drawn to science. I enjoyed learning how things work. I first became interested in psychology after reading The Catcher in the Rye in high school. I was so intrigued by Holden Caulfield’s thought processes and experiences of alienation and depression, despite the fact that he came from a wealthy family and went to a good school.
Why are some people more prone to experiencing depression? Why are some peoples’ thought processes so different than others? What factors contribute to resiliency? How can we help these people? These questions also made me think about the significant adversities that I had personally experienced. My desire to know more about the brain, as well as my personal experiences, instilled my passion to make a difference in others’ lives through science. Continue reading “RISE-ing Above: Embracing Physical Disability in the Lab”
This is the third post in a new series highlighting NIGMS’ efforts toward developing a robust, diverse and well-trained scientific workforce.
Credit: Christa Reynolds.
Priscilla Del Valle Academic Institution: The University of Texas at El Paso Major: Microbiology Minors: Sociology and Biomedical Engineering Mentor: Charles Spencer Favorite Book: The Immortal Life of Henrietta Lacks, by Rebecca Skloot Favorite Food: Tacos Favorite music: Pop Hobbies: Reading and drinking coffee
It’s not every day that you’ll hear someone say, “I learned more about parasites, and I thought, ‘This is so cool!’” But it’s also not every day that you’ll meet an undergraduate researcher like 21-year-old Priscilla Del Valle.
BUILD and the Diversity Program Consortium
The Diversity Program Consortium (DPC) aims to enhance diversity in the biomedical research workforce through improved recruitment, training and mentoring nationwide. It comprises three integrated programs—Building Infrastructure Leading to Diversity (BUILD), which implements activities at student, faculty and institutional levels; the National Research Mentoring Network (NRMN), which provides mentoring and career development opportunities for scientists at all levels; and the Coordination and Evaluation Center (CEC), which is responsible for evaluating and coordinating DPC activities.
Ten undergraduate institutions across the United States have received BUILD grants, and together, they serve a diverse population. Each BUILD site has developed a unique program intended to engage and prepare students for success in the biomedical sciences and maximize opportunities for research training and faculty development. BUILD programs include everything from curricular redesign, lab renovations, faculty training and research grants, to student career development, mentoring and research-intensive summer programs.
Del Valle’s interest in studying infectious diseases and parasites is motivating her to pursue an M.D./Ph.D. focusing on immunology and pathogenic microorganisms. Currently, Del Valle is a junior at The University of Texas at El Paso (UTEP)’s BUILDing SCHOLARS Center. BUILDing SCHOLARS, which stands for “Building Infrastructure Leading to Diversity Southwest Consortium of Health-Oriented Education Leaders and Research Scholars,” focuses on providing undergraduate students interested in the biomedical sciences with academic, financial and professional development opportunities. Del Valle is one of the first cohort of students selected to take part in this training opportunity.
BUILD scholars receive individual support through this training model, and Del Valle says she likes “the way that they [BUILDing SCHOLARS] take care of us and the workshops and opportunities that we have.”
Born in El Paso, Texas, Del Valle moved to Saltillo, Mexico, where she spent most of her childhood. Shortly after graduating from high school, she returned to El Paso to start undergraduate courses at El Paso Community College (EPCC), to pursue an M.D. Del Valle explains that in Mexico, unlike in the United States, careers in medical research are not really emphasized in the student community or in society, so she did not have firsthand experience with research.
Del Valle discovered her passion for research when she was assigned a project on malaria as part of an EPCC course. She was fascinated by the parasite that causes malaria. “It impressed me how something so little could infect a person so harshly,” she says. Continue reading “Bit by the Research Bug: Priscilla’s Growth as a Scientist”
Do you like to find new uses for old things? Like weaving old shirts into a rug, repurposing bottles into candle holders or turning packing crates into tables? Katie Gostic, a University of California, Los Angeles (UCLA) graduate student, likes finding new uses for old data. She channeled this interest when she analyzed existing data to study whether childhood exposure to flu affects a person’s future immunity to the disease.
Gostic conducted research for the flu project during the summer of 2015 when she was visiting her boyfriend, a tropical biologist, in Alamos, Sonora, Mexico. Credit: Charlie de la Rosa.
As an undergraduate student at Princeton University, Gostic was originally pursuing a degree in engineering. Her focus shifted to biology after taking an infectious disease modeling class. Gostic’s background in math and programming allows her to take large, complex pre-existing data sets and reanalyze them using new tools and methods. The result: Information that wasn’t accessible when the data were first collected.
Now a graduate researcher in the ecology and evolutionary biology lab of James Lloyd-Smith , Gostic studies infectious diseases. The lab builds mathematical models to investigate zoonotic diseases—diseases that animals can transmit to humans but that humans don’t frequently spread between each other. Examples include diseases caused by Leptospira, a type of bacteria that infects household pets and many other animals, and monkeypox, a virus whose transmission to humans is increasing since the eradication of smallpox. The lab also studies bird flus, a category of flu viruses that infect birds and other animals and only occasionally jump to people. A very small number of cases of human-to-human transmission of bird flus have been recorded. However, if a bird flu virus mutated in a way that allowed it to spread among humans, it could cause a pandemic. Continue reading “Student Researcher Finds New Clues About Flu with Old Data”
Subscribe to Biomedical Beat
Get our latest blog posts
delivered straight to your inbox! Sign Up Here