Over the years, scientists have discovered many compounds in nature that have led to the development of medications. For instance, the molecular structure for aspirin came from willow tree bark, and penicillin was found in a type of mold. And uses of natural products aren’t limited to medicine cabinet staples and antibiotics. A cancer drug was originally found in the bark of the Pacific yew tree, and a medication for chronic pain relief was first isolated from cone snail venom. Today, NIGMS supports scientists in the earliest stages of investigating natural products made by plants, fungi, bacteria, and animals. The results could inform future research and bring advances to the field of medicine.
Continue reading “Exploring Nature’s Treasure Trove of Helpful Compounds”Category: Chemistry, Biochemistry and Pharmacology
Scientist Interview: Studying the Biochemistry of Insects with Michael Kanost
Insects vastly outnumber people on our planet. Some are pests, but many are key parts of their ecosystems, and some may even hold secrets for developing new materials that researchers could use in the medical field. Michael Kanost, Ph.D. , a professor of biochemistry and molecular biophysics at Kansas State University in Manhattan, Kansas, has been researching the biochemistry of insects for more than 30 years. His lab studies the tobacco hornworm, a mosquito that carries malaria, and the red flour beetle to better understand insect exoskeletons and immune systems.
Continue reading “Scientist Interview: Studying the Biochemistry of Insects with Michael Kanost”Helium: An Abundant History and a Shortage Threatening Scientific Tools
Most of us know helium as the gas that makes balloons float, but the second element on the periodic table does much more than that. Helium pressurizes the fuel tanks in rockets, helps test space suits for leaks, and is important in producing components of electronic devices. Magnetic resonance imaging (MRI) machines that take images of our internal organs can’t function without helium. And neither can nuclear magnetic resonance (NMR) spectrometers that researchers use to determine the structures of proteins—information that’s important in the development of medications and other uses.
CC BY-NC-ND 4.0 . Click to enlarge
Reusable Disinfectant Developed from Mussel “Glue”
Many species have developed unique adaptations to help them thrive in their environments, and scientists in a field called biomimicry use these examples as the basis for tools to help humans. Biomimicry researchers have made a wide range of products, from climbing pads modeled after gecko feet to a faster, sharp-nosed bullet train based on the beak of the kingfisher bird. The animal kingdom also provides inspiration for biomedical products. For instance, scientists at Michigan Technological University in Houghton discovered that a natural “glue” produced by mussels has antimicrobial properties and are developing a way to put these properties to use.
Continue reading “Reusable Disinfectant Developed from Mussel “Glue””Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke
Whether animals are looking for food or mates, or avoiding pathogens and predators, they rely on biosensors—molecules that allow them to sense and respond to their environments. Christina Dawn Smolke, Ph.D. , a professor of bioengineering at Stanford University in California, focuses her research on creating new kinds of biosensors to receive, process, and transmit molecular information. Her lab has built RNA molecules, or switches, that can alter gene expression based on biochemical changes they detect.
Continue reading “Scientist Interview: Exploring the Promise of RNA Switches with Christina Dawn Smolke”Twisting and Turning: Unraveling What Causes Asymmetry
Note to our Biomedical Beat readers: Echoing the sentiments NIH Director Francis Collins made on his blog, NIGMS is making every effort during the COVID-19 pandemic to keep supporting the best and most powerful science. In that spirit, we’ll continue to bring you stories across a wide range of NIGMS topics. We hope these posts offer a respite from the coronavirus news when needed.
Asymmetry in our bodies plays an important role in how they work, affecting everything from function of internal systems to the placement and shape of organs. Take a look at your hands. They are mirror images of each other, but they’re not identical. No matter how you rotate them or flip them around, they will never be the same. This is an example of chirality, which is a particular type of asymmetry. Something is chiral if it can’t overlap on its mirror image.
Scientists are exploring the role of chirality and other types of asymmetry in early embryonic development. Understanding this relationship during normal development is important for figuring out how it sometimes goes wrong, leading to birth defects and other medical problems.
Continue reading “Twisting and Turning: Unraveling What Causes Asymmetry”The Chemistry of Chocolate
Chocolate is a Valentine’s Day must-have and popular among people with a sweet tooth. Many also claim it lifts mood or even acts as an aphrodisiac, and we’ve all heard someone say it’s habit forming.
The compounds in chocolate that allegedly have positive effects come from the cacao bean, so the darker the chocolate, the more of these compounds it contains. Milk chocolate has less than dark chocolate, and white chocolate has nearly none because it includes no cocoa solids, only cocoa butter.
Does science back up the common claims about chocolate? To find the answers, we’re taking a look at the chemistry behind this treat.
Continue reading “The Chemistry of Chocolate”Fabulous Fats in Your Holiday Feast
Happy Thanksgiving!
During this time of year, family and friends gather to enjoy rich foods and good company. Even if you typically follow a healthy diet, it can be hard to make wholesome food choices during occasions like these.
Our previous post, Five Fabulous Fats, highlighted essential fats made in our bodies. Here we discuss five important fats our bodies can’t make on their own, the foods that contain them, and why you should include a healthy dose of each in your diet.
Geranial
Geranial, a fat some people may not know about, is present in the oils of several citrus plants such as orange, lemon, and lime. Research suggests that its antibacterial and antimicrobial properties reduce inflammation in the body. So, think about adding some freshly squeezed lemonade to the menu.
Continue reading “Fabulous Fats in Your Holiday Feast”Five Fabulous Fats
Happy Fat Tuesday!
On this day, celebrated in many countries with lavish parties and high-fat foods, we’re recognizing the importance of fats in the body.
You’ve probably heard about different types of fat, such as saturated, trans, monounsaturated, omega-3, and omega-6. But fats aren’t just ingredients in food. Along with similar molecules, they fall under the broad term lipids and serve critical roles in the body. Lipids protect your vital organs. They help cells communicate. They launch chemical reactions needed for growth, immune function, and reproduction. They serve as the building blocks of your sex hormones (estrogen and testosterone).
Here we feature five of the hundreds of lipids that are essential to health.
Continue reading “Five Fabulous Fats”Roses Are Red and So Is . . . Blood?
When you think of blood, chances are you think of the color red. But blood actually comes in a variety of colors, including red, blue, green, and purple. This rainbow of colors can be traced to the protein molecules that carry oxygen in the blood. Different proteins produce different colors.
Continue reading “Roses Are Red and So Is . . . Blood?”